Аннотация:
В условиях перехода образовательных систем на дистанционное обучение, а также развития тренда на удалённую работу, возникла острая потребность в разработке надежных технологий биометрической идентификации и аутентификации для верификации исполнителей работ в режиме удаленной работы. Такие технологии позволяют обеспечить высокую степень защиты и удобство использования, что делает вопросы их разработки и оптимизации крайне важными.
Проблема заключается в необходимости повышения точности и эффективности систем распознавания движений манипулятора «мышь» без использования специализированных устройств в максимально короткий промежуток времени. Для ее решения требуется эффективная предобработка таких движений, чтобы упростить их траектории, сохранив при этом их ключевые особенности.
В статье предложено использование алгоритма Дугласа–Пеккера для предварительной обработки данных траекторий движений «мыши». Этот алгоритм позволяет значительно уменьшить количество точек в траекториях, упрощая их при сохранении основной формы движений. Данные с упрощенными траекториями затем используются для обучения нейронных сетей.
Экспериментальная часть работы показала, что применение алгоритма Дугласа–Пеккера позволяет сократить количество точек в траекториях на 60%, что приводит к увеличению точности распознавания движений с 70% до 82%. Такое упрощение данных способствует ускорению процесса обучения нейронных сетей и повышению их операционной эффективности.
Проведенное исследование подтвердило эффективность использования алгоритма Дугласа–Пеккера для предварительной обработки данных в задачах распознавания движений «мыши». Полученные результаты могут найти применение в разработке более интуитивно понятных и адаптивных пользовательских интерфейсов.
Предложены также направления для дальнейших исследований, включая оптимизацию параметров алгоритма для различных типов движений и исследование возможности его комбинирования с другими методами машинного обучения.