О модели поиска синонимов
Main Article Content
Аннотация
Рассмотрена задача нахождения наиболее релевантных документов в результате расширенного и уточненного запроса. Для ее решения предложены модель поиска и механизм предварительной обработки текста, а также совместное использование поисковой системы и модели, построенной на основе индекса с помощью алгоритмов word2vec для генерации расширенного запроса с синонимами и уточнения результатов поиска на основе подбора похожих документов в цифровой семантической библиотеке. В работе исследуется построение векторного представления документов применительно к массиву данных цифровой семантической библиотеки LibMeta. Решалась задача обогащения пользовательских запросов синонимами. При построении модели поиска совместно с алгоритмами word2vec использован подход «сначала индексация, затем обучение», что позволяет получить более точные результаты поиска. Обучение модели проводилось на базе контента библиотеки для предметной области «Математика». Приведены примеры расширенного запроса с использованием синонимов.
Ключевые слова:
Article Details
Библиографические ссылки
2. Salton G. Introduction to Modern Information Retrieval. McGraw-Hill, 1983, 513 p.
3. Blei D.M., Ng A.Y., Jordan M.I. Latent Dirichlet Allocation // Journal of Machine Learning Research. 2003. V. 3. P. 993–1022.
4. Furnas G.W., Landauer T.K., Gomez L.M., Dumais S.T. The vocabulary problem in human-system communication // Commun. ACM. 1987. V. 30 No. 11 P. 964–971.
5. Biswas G., Bezdek J., Oakman R.L. A knowledge-based approach to online document retrieval system design. In Proc. ACM SIGART Int. Symp. Methodol. Intell. Syst. 1986. P. 112 120.
6. Мак-Каллок У.С., Питтс В. Логическое исчисление идей, относящихся к нервной активности // Автоматы. Под ред. К. Э. Шеннона и Дж. Маккарти. М.: Изд-во иностр. лит., 1956. С. 363–384 (Перевод английской статьи 1943 г.).
7. Профессиональный информационно-аналитический ресурс, посвященный машинному обучению, распознаванию образов и интеллектуальному анализу данных. URL: http://www.machinelearning.ru/ (доступно 26.10.2021)
8. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб.: Питер, 2000. 384 с.
9. Атаева О.М., Серебряков В.А. Онтология цифровой семантической библиотеки LibMeta // Информатика и её применения. 2018. Т. 12. № 1. С. 2–10.
10. Mikolov T., Chen K., Corrado G., Dean J. Efficient Estimation of Word Representations in Vector Space // Proceedings of Workshop at ICLR, 2013.
11. Mikolov T., Yih W.T., Zweig C. Linguistic Regularities in Continuous Space Word Representations // Proceedings of NAACL HLT, 2013.
12. Le Q., Mikolov T. Distributed Representations of Sentences and Document // International Conference on Machine Learning. 2014. P. 1188–1196.
13. Ataeva O.M., Sererbryakov V.A., Tuchkova N.P. Using Applied Ontology to Saturate Semantic Relations // Lobachevskii Journal of Mathematics. 2021. V. 42. No. 8. P. 1776–1785.
14. Voorhees E.M. Query expansion using lexical-semantic relations. 17th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Dublin, Ireland, 1994.
15. Buckley C., Salton G., Allan J., Singhal A. Automatic query expansion using SMART: TREC 3, presented at the 3rd Text Retr. Conf. (TREC), 1995.
16. Efthimiadis E.N. Query expansion // Annu. Rev. Inf. Sci. Technol. 1996. V. 31. No. 5. P. 121–187.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Представляя статьи для публикации в журнале «Электронные библиотеки», авторы автоматически дают согласие предоставить ограниченную лицензию на использование материалов Казанскому (Приволжскому) федеральному университету (КФУ) (разумеется, лишь в том случае, если статья будет принята к публикации). Это означает, что КФУ имеет право опубликовать статью в ближайшем выпуске журнала (на веб-сайте или в печатной форме), а также переиздавать эту статью на архивных компакт-дисках журнала или включить в ту или иную информационную систему или базу данных, производимую КФУ.
Все авторские материалы размещены в журнале «Электронные библиотеки» с ведома авторов. В случае, если у кого-либо из авторов есть возражения против публикации его материалов на данном сайте, материал может быть снят при условии уведомления редакции журнала в письменной форме.
Документы, изданные в журнале «Электронные библиотеки», защищены законодательством об авторских правах, и все авторские права сохраняются за авторами. Авторы самостоятельно следят за соблюдением своих прав на воспроизводство или перевод их работ, опубликованных в журнале. Если материал, опубликованный в журнале «Электронные библиотеки», с разрешения автора переиздается другим издателем или переводится на другой язык, то ссылка на оригинальную публикацию обязательна.
Передавая статьи для опубликования в журнале «Электронные библиотеки», авторы должны принимать в расчет, что публикации в интернете, с одной стороны, предоставляют уникальные возможности доступа к их материалам, но, с другой, являются новой формой обмена информацией в глобальном информационном обществе, где авторы и издатели пока не всегда обеспечены защитой от неправомочного копирования или иного использования материалов, защищенных авторским правом.
При использовании материалов из журнала обязательна ссылка на URL: http://rdl-journal.ru. Любые изменения, дополнения или редактирования авторского текста недопустимы. Копирование отдельных фрагментов статей из журнала разрешается для научных исследований, персонального использования, коммерческого использования до тех пор, пока есть ссылка на оригинальную статью.
Запросы на право переиздания или использования любых материалов, опубликованных в журнале «Электронные библиотеки», следует направлять главному редактору Елизарову А.М. по адресу: amelizarov@gmail.com
Издатели журнала «Электронные библиотеки» не несут ответственности за точки зрения, излагаемые в публикуемых авторских статьях.
Предлагаем авторам статей загрузить с этой страницы, подписать и выслать в адрес издателя журнала по электронной почте скан Авторского договора о передаче неисключительных прав на использование произведения.