Подходы к проектированию виртуальных тренажёров хирургических операций

Main Article Content

Регина Айратовна Шараева
Влада Владимировна Кугуракова
Раилина Рафаэлевна Галиева
Сергей Викторович Зинченко

Аннотация

Показаны достоинства симуляционного обучения в тренинге клинических навыков. Представлено, как практики, которые применяются в инвазивной хирургии, могут быть перенесены в виртуальную операционную. Рассмотрены примеры реализаций тренажёров для определения оптимальных подходов к реализации и выстраиванию оптимального процесса разработки. Как логичное развитие функционала, представлены подходы, которые смогут позволить эмулировать все практики, которые происходят при реальных операциях, в т. ч. многопользовательский режим, вариативность сценариев операций, достижение освоения мануальных техник, а также необходимость внесения инцидентов, инициирующих психологическое выгорание будущих хирургов и осознанный выбор специализации.

Article Details

Библиографические ссылки

1. Спиотта А.М., Шленк Р.П. Симуляционное обучение нейрохирургических интернов: новая парадигма // Медицинское образование и профессиональное развитие. 2017. № 1 (27). С. 24–30.
2. Davids J., Manivannan S., Darzi A., Giannarou S., Ashrafian H. & Marcus H.J. Simulation for skills training in neurosurgery: a systematic review, meta-analysis, and analysis of progressive scholarly acceptance // Neurosurgical review. 2022. Vol. 44. No. 4. P. 1853–1867.
3. Haiser A., Aydin A., Kunduzi B., Ahmed K. & Dasgupta P. A Systematic Review of Simulation-Based Training in Vascular Surgery // Journal of Surgical Research. 2022. Vol. 279. P. 409–419.
4. James J., Irace A.L., Gudis D.A. & Overdevest J.B. Simulation training in endoscopic skull base surgery: A scoping review // World Journal of Otorhinolaryngology – Head and Neck Surgery. 2022. Vol. 8. No. 1. P. 73–81.
5. Saleem H.Y., Kaplan J.L., Torres-Guzman R.A., Avila F.R. & Forte A.J. Simulation in Hand Surgery: A Literature Review // World Journal of Surgery. 2022. Vol. 46. No. 3. P. 718–724.
6. Rohrich R.J. See one, do one, teach one: an old adage with a new twist // Plast. Reconstr. Surg. 2006. Vol. 118. P. 257–258.
7. Kotsis S.V., Chung K.C. Application of the «see one, do one, teach one» concept in surgical training // Plast. Reconstr. Surg. 2013. Vol. 131. P. 1194–1201.
8. Konge L., Lonn L. Simulation-based training of surgical skills // Perspect. Med. Educ. 2016. Vol. 5. P. 3–4.
9. Norman G. Data dredging, salami-slicing, and other successful strategies to ensure rejection: twelve tips on how to not get your paper published // Adv. Health Sci. Educ. Theory Pract. 2014. Vol. 19. P. 1–5.
10. Konge L., Clementsen P.F., Ringsted C., Minddal V., Larsen K.R., Annema J.T. Simulator training for endobronchial ultrasound: a randomised controlled trial // Eur. Respir. Journal. 2015. Vol. 46. P. 1140–1149.
11. Andersen S.A., Konge L., Caye-Thomasen P., Sorensen M.S. Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice // JAMA Otolaryngol. Head Neck Surg. 2015. P. 1–6.
12. Räder S.B., Henriksen A.H., Butrymovich V., et al. A study of the effect of dyad practice versus that of individual practice on simulation-based complex skills learning and of studentsʼ perceptions of how and why dyad practice contributes to learning // Acad. Med. 2014. Vol. 89. P. 1287–1294.
13. Brydges R., Nair P., Ma I., Shanks D., Hatala R. Directed self-regulated learning versus instructor-regulated learning in simulation training // Med. Educ. 2012. Vol. 46. P. 648–656.
14. Газизов Р.Р. Физика веревки для реализации кетгутовой нити в виртуальной операционной // Ученые записки института социальных и гуманитарных знаний КФУ. 2019. Т. 17. № 1. C. 572–578.
15. Kugurakova V.V., Elizarov A.M., Khafizov M.R. et al. Towards the immersive VR: measuring and assessing realism of user experience // ICAROB 2018: Proceedings of the 2018 International Conference on Artificial Life and Robotics. 2018. P. 146–152.
16. Abramov V.D., Kugurakova V.V., Rizvanov A.A. et al. Virtual Biotechnological Lab Development // BioNanoScience. 2017. Vol. 7. Is. 2. P. 363–365.
17. Lushnikov A., Kugurakova V., Nizamutdinov A. Development of VR system to enhance understanding process of robot mechanisms // ICAROB 2018: Proceedings of the 2018 International Conference on Artificial Life and Robotics. 2018. P. 140–145.
18. Kugurakova V.V., Abramov V.D., Sultanova R.R. et al. Virtual Reality-Based Immersive Simulation for Invasive Surgery Training // European Journal of Clinical Investigation. 2018. Vol. 48. P. 224–225.
19. Sultanova R., Sharaeva R. Virtual reality-based immersive simulation mechanics for invasive surgery training // Proceedings of International Conference on Developments in eSystems Engineering, DeSE. 2019. Vol. October 2019. P. 924–928.
20. Программа для обучения аппендэктомии в виртуальной реальности: Свидетельство о государственной регистрации программы для ЭВМ №2020613665 Российская Федерация / В.В. Кугуракова, М.Р. Хафизов, В.Д. Абрамов, Р.А. Шараева, Р.Р. Газизов, Т.М. Зиннуров, С.В. Зинченко; заявитель и правообладатель Фед. гос. автоном. образоват. учреждение высш. образ. Казанский фед. ун-т. №2020612602; заявл. 10.03.2020; зарегистрировано в реестре программ для ЭВМ 19.03.2020. 1 с.
21. Программа для обучения трахеостомии в виртуальной реальности: Свидетельство о государственной регистрации программы для ЭВМ № 2022661512 Российская Федерация / В.В. Кугуракова, А.П. Киясов, Р.И. Файзуллин, С.В. Зинченко, Р.Р. Галиева, Р.Р. Газизов, Н.Р. Курбангалиева, Р.А. Шараева, Н.Э. Романчук, М.Р. Хафизов; заявитель и правообладатель Фед. гос. автоном. образоват. учреждение высш. образ. Казанский фед. ун-т. № 2022660504; заявл. от 08.06.2022; зарег. в реестре программ для ЭВМ 22.06.2022. 1 с.
22. Mao R.Q., Lan L., Kay J., Lohre R., Ayeni O.R., Goel D.P. & SA D.D. Immersive Virtual Reality for Surgical Training: A Systematic Review // Journal of Surgical Research. 2021. Vol. 268. P. 40–58.
23. Смирнов А.А., Татаркин В.В., Захматов И.Г., Марьянович А.Т., Андреевская М.В., Назмиев А.И., Кудлахмедов Ш.Ш., Рыбаков В.А. Тренажёр для освоения мануальных навыков хирургических вмешательств на мозговом отделе черепа // Креативная хирургия и онкология. 2017. № 7(1). C. 63–68.
24. Аналогов в России нет: пермяки придумали тренажёр, на котором врачи научатся делать трепанацию черепа // 59.РУ. 2017. URL: https://59.ru/text/ gorod/2017/08/14/50888691/ (дата обращения: 01.09.2022).
25. Cevallos N., Zukotynski B., GReig D., Silva M. and Thompson R.M. The Utility of Virtual Reality in Orthopedic Surgical Training // Journal of Surgical Education. 2022. Vol. 79(6). P. 1516–1525.
26. Новый интерактивный образовательный модуль с VR-тренажёром по отработке алгоритма оказания неотложной хирургической помощи доступен на Портале // Портал непрерывного медицинского и фармацевтического образования Минздрава России, 2021. URL: https://edu.rosminzdrav.ru/anonsy/anonsy/news/novyi-interaktivnyi-obrazovatelnyi-modul-s-vr-trenazh/ (дата обращения: 01.09.2022).
27. Ростех разработал виртуальный тренажёр для обучения хирургов // Ростех, 2022. URL: https://rostec.ru/news/rostekh-razrabotal-virtualnyy-trenazher-dlya-obucheniya-khirurgov (дата обращения: 01.09.2022).
28. Sadeghi A.H., Peek J.J., Max S.A., Smit L.L., Martina B.G., Rosalia R.A., Bakhuis W., Bogers A.J., Mahtab E.A. Virtual Reality Simulation Training for Cardiopulmonary Resuscitation After Cardiac Surgery: Face and Content Validity Study // JMIR Serious Games. 2022. Vol. 10. No. 1. P. e30456.
29. Atli K., Selman W., Ray A. A comprehensive multicomponent neurosurgical course with use of virtual reality: modernizing the medical classroom // Journal of Surgical Education. 2020. Vol.78(4). P. 1350–1356.
30. Bing E.G., Parham G.P., Cuevas A., et al. Using low-cost virtual reality simulation to build surgical capacity for cervical cancer treatment // Journal Glob. Oncol. 2019. P. 1–7.
31. Chaudhary A.H., Bukhari F., Iqbal W., Nawaz Z., Malik M.K. Laparoscopic training exercises using HTC VIVE // Intell. Autom. Soft Co. 2020. Vol. 26. P. 53–59.
32. Logishetty K., Gofton W.T., Rudran B., Beaulé P.E., Cobb J.P. Fully immersive virtual reality for total hip arthroplasty: objective measurement of skills and transfer of visuospatial performance after a competency-based simulation curriculum // Journal Bone Joint Surg. Am. 2020. P. e27.
33. Luca A., Giorgino R., Gesualdo L., Peretti G.M., Belkhou A., Banfi G., et al. Innovative educational pathways in spine surgery: advanced virtual reality-based training // World Neurosurg. 2020. P. 674–680.
34. Arroyo-Berezowsky C., Jorba-Elguero P., Altamirano-Cruz M.A., Quinzaños-Fresnedo J. Usefulness of immersive virtual reality simulation during femoral nail application in an orthopedic fracture skills course // Journal Musculoskelet. Surg. Res. 2019. P. 326–333.
35. Hooper J., Tsiridis E., Feng J.E., et al. Virtual reality simulation facilitates resident training in total hip arthroplasty: a randomized controlled trial // Journal Arthroplasty. 2019. P. 2278–2283.
36. Logishetty K., Rudran B., Cobb J.P. Virtual reality training improves trainee performance in total hip arthroplasty: a randomized controlled trial // Bone Joint Journal. 2019. P. 1585–1592.
37. Lohre R., Bois A.J., Athwal G.S., Goel D.P. Canadian Shoulder and Elbow Society (CSES). Improved complex skill acquisition by immersive virtual reality training: a randomized controlled trial // Journal Bone Joint Surg. Am. 2020. P. e26.
38. Orland M.D., Patetta M.J., Wieser M., Kayupov E., Gonzalez M.H. Does virtual reality improve procedural completion and accuracy in an intramedullary tibial nail procedure? A randomized control trial // Clin. Orthop. Relat. Res. 2020. P. 2170–2177.
39. Praamsma M., Carnahan H., Backstein D., Veillette C.J., Gonzalez D., Dubrowski A. Drilling sounds are used by surgeons and intermediate residents, but not novice orthopedic trainees, to guide drilling motions // Can. Journal Surg. 2008. P. 442–446.
40. Sabbagh A.J., Bajunaid K.M., Alarifi N., et al. Roadmap for developing complex virtual reality simulation scenarios: subpial neurosurgical tumor resection model // World Neurosurg. 2020. P. e220–e229.
41. Comparing Unity vs Unreal for VR, MR or AR Development Projects // XR Bootcamp, 2022. URL: https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/ (дата обращения: 01.09.2022).
42. Tsarouva M. Choosing an engine for VR: Unity vs Unreal // iTechArt, 2022. URL: https://www.itechart.com/blog/unity-vs-unreal-virtual-reality/ (дата обращения: 01.09.2022).
43. Диденко Г. Орёл или решка: сравнение Unity и Unreal Engine // DTF, 2017. URL: https://dtf.ru/gamedev/7227-orel-ili-reshka-sravnenie-unity-i-unreal-engine (дата обращения: 01.09.2022).
44. Блендшейпы (Blend Shapes), морфы (Morph), Shape key | Словарь // ShutterLine. URL: https://3dyuriki.com/2010/05/02/blendshejpy-blend-shapes-i-morfy-morph-slovar/ (дата обращения: 01.09.2022).
45. VR Template // Epic Games. URL: https://docs.unrealengine.com/4.27/en-US/Resources/Templates/VRTemplate/ (дата обращения: 01.09.2022).
46. Animation Notifications (Notifies) // Epic Games. URL: https://docs.unrealengine.com/4.27/en-US/AnimatingObjects/SkeletalMeshAnimation/Sequences/Notifies/ (дата обращения: 01.09.2022).
47. Маккефри М. Unreal Engine VR для разработчиков. Изд-во Бомбора, 2019. 256 c.
48. Хай Г.А. Ассистирование при хирургических операциях. СПб, 1998. 382 с.
49. Шараева Р.А., Кугуракова В.В., Селезнева Н.Э. Методика упрощения таск-трекинга в проектах игровой индустрии // Программные продукты и системы. 2022. Т. 35. No 3. С. 374–383.
50. Шараева Р.А., Кугуракова В.В. Оценка сокращения времени при использовании модифицированной методики таск-трекинга в управлении ИТ-проектами // Программные системы: теория и приложения. 2022. Т. 13. №3(54). С. 307–324.
51. Bowyer M.W., Streete K.A., Muniz G.M., Liu A.V. Immersive virtual environments for medical training // Semin. Colon. Rectal. Surg. 2008. P. 90–97.
52. Мухаметханов И.Р., Хафизов М.Р., Шубин А.В. Сравнение клиент-серверных решений при разработке многопользовательских онлайн-игр на Unity // Электронные библиотеки. 2022. №5.
53. Carter F.J., Schijven M.P., Aggarwal R., et al. Consensus guidelines for validation of virtual reality surgical simulators // Simul. Healthc. 2006. P. 171–179.
54. Mirchi N., Bissonnette V., Yilmaz R., Ledwos N., Winkler-Schwartz A., Del Maestro R.F. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine // PLoS ONE. 2020. Vol. 15(2): e0229596. P. 1–15.
55. Sawaya R., Bugdadi A., Azarnoush H., Winkler-Schwartz A., Alotaibi F.E., Bajunaid K., et al. Virtual Reality Tumor Resection: The Force Pyramid Approach // Operative Neurosurgery. 2018. P. 686–696.
56. Wagner C.R., Stylopoulos N., Jackson P.G., Howe R.D. The benefit of force feedback in surgery: Examination of blunt dissection // Presence: teleoperators and virtual environments. 2007. P. 252–262.
57. Ladha L., Deepa T. Feature selection methods and algorithms // International journal on computer science and engineering. 2011. P. 1787–1797.
58. LLi J., Cheng K., Wang S., Morstatter F., Trevino R.P., Tang J., et al. Feature selection: A data perspective // ACM Computing Surveys (CSUR). 2018. P. 1–45.
59. Winkler-Schwartz A., Yilmaz R., Mirchi N., Bissonnette V., Ledwos N., Siyar S., et al. Assessment of Machine Learning Identification of Surgical Operative Factors Associated with Surgical Expertise in Virtual Reality Simulation // JAMA Network Open. 2019. P. e198363–e198363.
60. Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy // Journal of Machine Learning Research. 2004. P. 1205–1224.
61. Wang X., Wang Y., Wang L. Improving fuzzy c-means clustering based on feature-weight learning // Pattern Recognition Letters. 2004. P. 1123–1132.
62. Ryu W.H.A., Chan S., Sutherland G.R. Supplementary educational models in Canadian neurosurgery residency programs // Canadian Journal of Neurological Sciences. 2017. P. 177–183.
63. Sweller J. Cognitive load theory, learning difficulty, and instructional design // Learning and Instruction. 1994. P. 295–312.
64. Gobet F., Lane P.C., Croker S., ChengмP.C., Jones G., Oliver I., et al. Chunking mechanisms in human learning // Trends in Cognitive Sciences. 2001. P. 236–243.
65. Williamson B. Digital education governance: data visualization, predictive analytics, and ‘real-time’ policy instruments // Journal of Education Policy. 2016. P. 123–141.
66. Saplacan D., Herstad J., Pajalic Z. Feedback from Digital Systems Used in Higher Education: An Inquiry into Triggered Emotions–Two Universal Design Oriented Solutions for a Better User Experience // Studies in Health Technology and Informatics. 2018. P. 421–430.
67. Кугуракова В.В. Математическое и программное обеспечение многопользовательских тренажёров с погружением в иммерсивные виртуальные среды: дис. канд. техн. наук: 05.13.11. Казанский федеральный университет, 2018. 187 c.
68. Akhmetsharipov R.D., Khafizov M.R., Lushnikov A.Yu., Zigantdinov Sh.Ya. The soft tissue implementation with triangulated mesh for virtual surgery system // Smart Innovation, Systems and Technologies. 2018. P. 163–167.
69. Shigapov M.I., Kugurakova V.V. Design and development of a hardware and software system for simulation of feedback tactility // Proceedings SIBCON. 2021. P. 1–6.
70. Shigapov M.I., Kugurakova V.V., Zykov E.Yu. Design of digital gloves with feedback for VR // Proceedings IEEE EWDTS. 2018. P. 1–5.
71. Аглямов Ф.Р., Кугураков В.С. Тренажёр для реабилитации пациентов с проблемами мобильности руки, построенный с использованием технологий виртуальной реальности // Программные продукты и системы. 2022. Т. 35. No 3. С. 285–292.
72. Friston S., Griffith E., Swapp D., Marshall A., Steed A. Position-based control of under-constrained haptics: A system for the Dexmo glove // IEEE Robot Autom. [Internet]. 2019. P. 3497–3504.
73. Bhalla S., Beegun I., Awad Z., Tolley N. Simulation-based ENT induction: validation of a novel mannequin training model // Journal Laryngol. Otol. 2020. P. 74–80.
74. McLaren O., Perkins C., Alderson D. The effect of surgical complications on ENT trainees // Journal Laryngol. Otol. 2021. P. 293–296.
75. Cherry J., Weir R. Medicolegal and ethical aspects of ORL-HNS in the new millennium // Journal Laryngol. Otol. 2006. P. 737–740.
76. Mayer A.W., Smith K.A., Carrie S. A systematic review of factors affecting choice of otolaryngology as a career in medical students and junior doctors // Journal Laryngol. Otol. 2019. P. 836–842.
77. Bhutta M., Mandavia R., Syed I., Qureshi A., Hettige R., Wong B.Y.W. et al. A survey of how and why medical students and junior doctors choose a career in ENT surgery // Journal Laryngol. Otol. 2016. P. 1054–1058.


Наиболее читаемые статьи этого автора (авторов)

1 2 3 4 > >>