Software Module for Forming Digital Mathematical Space Based on Knowledge Graphs

Main Article Content

Vadim Igorevich Gurianov
Alexander Mikhailovich Elizarov

Abstract

The modern information space contains a lot of data, but they are often poorly structured, difficult to find and not always correct. This creates additional difficulties during researches, so digital spaces of scientific knowledge are currently being formed, in particular, based on knowledge graphs.


To ensure the quality of information, such graphs are often filled with data manually, which is time-consuming. Therefore, the creation of a tool that provides the ability to automate process of filling a graph with data, as well as ensures data quality, will simplify and speed up the process of forming digital spaces of scientific knowledge.


Methods for automating the filling of the graph with data are proposed, including parallel control of their integrity. Based on the proposed methods, a software module has been developed, the mechanisms of its functioning and its architecture are described.

Article Details

How to Cite
Gurianov, V. I., and A. M. Elizarov. “Software Module for Forming Digital Mathematical Space Based on Knowledge Graphs”. Russian Digital Libraries Journal, vol. 28, no. 3, June 2025, pp. 622-39, doi:10.26907/1562-5419-2025-28-3-622-639.

References

Ataeva O., Kalenov N., Serebryakov V., Sotnikov A. Informational Infrastructure of the Common Digital Space of Scientific Knowledge // International Conference «Common Digital Space of Scientific Knowledge», November 10–12, 2020, Moscow, Russia / CEUR Workshop Proceedings. 2021. Vol. 2990. P. 1–10. https://doi.org/10.51218/1613-0073-2990-1-10
2. Атаева О.М., Каленов Н.Е., Серебряков В.А. Об основных понятиях Единого цифрового пространства научных знаний // Научный сервис в сети Интернет: труды XXII Всероссийской научной конференции (21–25 сентября 2020 г., онлайн). М.: ИПМ им. М.В. Келдыша, 2020. С. 29–40. https://doi.org/10.20948/abrau-2020-18
3. Fecher B., Kahn R., Sokolovska N., Völker T., Nebe P. Making a Research Infrastructure: Conditions and Strategies to Transform a Service into an Infrastructure // Science and Public Policy. 2021. Vol. 48, No. 4. P. 499–507. https://doi.org/10.1093/scipol/scab026
4. Kohn Rådberg K., Löfsten H. Developing a knowledge ecosystem for large-scale research infrastructure // The Journal of Technology Transfer. 2023. Vol. 48, No. 1. P. 441–467. https://doi.org/10.1007/s10961-022-09945-x
5. Papon P. European scientific cooperation and research infrastructures: Past tendencies and future prospects // Minerva. 2004. Vol. 42, No. 1. P. 61–76. https://doi.org/10.1023/B:MINE.0000017700.63978.4a
6. Антопольский А.Б., Каленов Н.Е., Серебряков В.А., Сотников А.Н. О едином цифровом пространстве научных знаний // Вестник Российской академии наук. 2019. Т. 89, №7. С. 728–735. https://doi.org/10.31857/S0869-5873897728-735
7. Elizarov A., Lipachev E. Lobachevskii Digital Library in the Scientific Space of Mathematical Knowledge, Scientific and Technical Information Processing. 2023. Vol. 50, No. 1. P. 35–39. https://doi.org/10.3103/S0147688223010021
8. Serebryakov V.A., Ataeva O.M. Ontology Based Approach to Modeling of the Subject Domain ‘‘Mathematics” in the Digital Library // Lobachevskii Journal of Mathematics. 2021. Vol. 42, No. 8. P. 1920–1934. https://doi.org/10.1134/S199508022108028X
9. Lange C. Ontologies and languages for representing mathematical knowledge on the Semantic Web // Semantic Web. 2013. Vol. 4, No. 2. P. 119–158. https://doi.org/10.3233/SW-2012-0059
10. Wang J. Math-KG: Construction and Applications of Mathematical Knowledge Graph, arXiv:2205.03772. 2022. P. 1–5. https://doi.org/10.48550/arXiv.2205.03772.
11. Муромский А.А., Тучкова Н.П. Представление математических понятий в онтологии научных знаний // Онтология проектирования. 2019. Т. 9, №1 (31). С. 50–69. https://doi.org/10.18287/2223-9537-2019-9-1-50-69
12. Елизаров А.М., Кириллович А.В., Липачёв Е.К., Невзорова О.А. Онтология математического знания OntoMathPRO // Доклады Российской академии наук. Математика, информатика, процессы управления. 2022. Т. 507. № 1. С. 29–35. https://doi.org/10.31857/S2686954322700011
13. Елизаров А.М., Кириллович А.В., Липачёв Е.К., Невзорова О.А. Новые компоненты онтологии OntoMathPRO представления математического знания // Научный сервис в сети Интернет: труды XXV Всероссийской научной конференции (18–21 сентября 2023 г., онлайн). М.: ИПМ им. М.В. Келдыша, 2023. С. 141–151. https://doi.org/10.20948/abrau-2023-32
14. Невзорова О.А., Гизатуллин Б.Т. Система автоматического построения графов знаний математических документов // Ученые записки Казанского университета. Серия: Физико-математические науки. 2023. Т. 165, № 3. С. 264–281. https://doi.org/10.26907/2541-7746.2023.3.264-281
15. Lehmann J., Isele R., Jakob M., Jentzsch A., Kontokostas D., N. Mendes P., Hellmann S., Morsey M., Van Kleef P., Auer S., Bizer C. DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia // Semantic Web. 2015. Vol. 6, No. 2. P. 167–195. https://doi.org/10.3233/SW-140134
16. Vrandečić D., Krötzsch M. Wikidata: a free collaborative knowledgebase // Communications of the ACM. 2014. Vol. 57, No. 10. P. 78–85. https://doi.org/10.1145/2629489
17. Schembera B., Wübbeling F., Kleikamp H., Schmidt B., Shehu A., Reidelbach M., Biedinger C., Fiedler J., Koprucki T., Iglezakis D., Göddeke D. Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics // arXiv:2408.10003. https://doi.org/10.48550/arXiv.2408.10003
18. Protégé. URL: https://protege.stanford.edu
19. Home // RDFLib. URL: https://rdflib.dev
20. SPARQL Endpoint interface to Python // SPARQLWrapper documentation URL: https://sparqlwrapper.readthedocs.io/en/latest/main.html
21. RDF // Semantic Web Standards. URL: https://www.w3.org/RDF.
22. Virtuoso Homepage // OpenLink Software. URL: https://virtuoso.openlinksw.com.
23. VIGuryanov/Knowledge-Graphs-Builder // GitHub. URL: https://github.com/VIGuryanov/Knowledge-Graphs-Builder.