Development of a System for Collecting Data on the Movement of People Indoors

Main Article Content

Abstract

The COVID-19 pandemic makes the problem of monitoring and analyzing the movement of people indoors more urgent in order to timely identify those who have been in contact with the sick and prevent further spread of the infection.


The article proposes one of the ways to solve this problem - the development of a system for determining and saving the history of the location of people inside the premises. The article also discusses methods, parameters and technologies that can be used to solve the problem of indoor localization.

Article Details

References

1. Tsai H.-C., Chiu C.-J., Tseng P.-H., Feng K.-T. Refined Autoencoder-Based CSI Hidden Feature Extraction for Indoor Spot Localization // IEEE Vehicular Technology Conference, VTC-Fall. 2018. P. 1–5. https://doi.org/10.1109/VTCFall.2018.8690917
2. Kawdungta R., Kawdungta S., Torrungrueng D., Phongcharoenpanich C. Switched Beam Multi-Element Circular Array Antenna Schemes for 2D Single-Anchor Indoor Positioning Applications // IEEE Access. 2021. V. 9. P. 58882–58892. https://doi.org/10.1109/ACCESS.2021.3072951
3. Indoor Location Market global forecast to 2026. URL: https://www.marketsandmarkets.com/Market-Reports/indoor-location-market-989.html, last accessed 2021/10/15
4. Spachos P., Plataniotis K. BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum // IEEE Systems J. 2020. P. 3483–3493. https://doi.org/10.1109/JSYST.2020.2969088
5. Dong Y., Shan F., Dou G., Cui Y. The Research and Application of Indoor Location Algorithm Based on Wireless Sensor Network // IEEE 3rd International Conference Communication Software and Networks. 2011. P. 719–722. https://doi.org/10.1109/ICCSN.2011.6014369
6. Bharadwaj R., Parini C., Alomainy A. Experimental Investigation of 3-D Human Body Localization Using Wearable Ultra-Wideband Antennas // IEEE Trans. Antennas Propagation. 2015. P. 5035–5044. https://doi.org/10.1109/TAP.2015.2478455
7. Chen R.A. Novel Method for Indoor Location Identification. // 2nd International Symposium on Aware Computing. 2010. P. 257–262. https://doi.org/10.1109/ISAC.2010.5670486
8. Методы локального позиционирования. URL: https://habr.com/ru/company/realtrac/blog/301706/, last accessed 2021/11/02.
9. Yassin A., Nasser Y., Awad M., Al-dubai A. Simultaneous Context Inference and Mapping using mm-Wave for Indoor Scenarios // IEEE International Conference on Communications (ICC). 2017. https://doi.org/10.1109/ICC.2017.7996976
10. Zafar F., Gkelias A., Leung K.K. A Survey of Indoor Localization Systems and Technologies // IEEE Communications Surveys Tutorials. 2019. P. 2568–2599. https://doi.org/10.1109/COMST.2019.2911558
11. Laoudias C., Moreira A., Kim S., Lee S., Wirola L., Fischione C. A Survey of Enabling Technologies for Network Localization, Tracking, and Navigation // IEEE Communications Surveys & Tutorials. 2018. P. 3607–3644. https://doi.org/10.1109/COMST.2018.2855063
12. Wang X., Gao L., Mao S., Pandey S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach // IEEE Transactions on Vehicular Technology. 2016. P. 763–776. https://doi.org/10.1109/TVT.2016.2545523
13. Hsieh H.-Y., Prakosa S.W. Towards the Implementation of Recurrent Neural Network Schemes for WiFi Fingerprint-Based Indoor Positioning // IEEE Vehicular Technology Conference. 2018. https://doi.org/10.1109/VTCFall.2018.8690989
14. Ding N., Wagner D., Chen X., Pathak A., Hu Y.C., Rice A. Characterizing and modeling the impact of wireless signal strength on smartphone battery drain // ACM Sigmetrics Perform. 2013. P. 29–40. https://doi.org/10.1145/2494232.2466586
15. Cidronali A., Maddio S., Giorgetti G., Manes G. Analysis and Performance of a Smart Antenna for 2.45-GHz Single-Anchor Indoor Positioning // IEEE Transactions on Microwave Theory and Tech. 2010. P. 21–31. https://doi.org/10.1109/TMTT.2009.2035947
16. Rusli M.E., Ali M., Jamil N., Din M.M. An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration Technique for Internet of Things (IOT) // International Conference on Computer and Communication Engineering. 2016. P. 72–77. https://doi.org/10.1109/ICCCE.2016.28
17. Ren J., Wang Y., Niu C., Song W., Huang S. A Novel Clustering Algorithm for Wi-Fi Indoor Positioning // IEEE Access. 2019. P. 122428–122434. https://doi.org/10.1109/ACCESS.2019.2937464
18. Shi S., Sigg S., Chen L., Ji Y. Accurate Location Tracking from CSI-Based Passive Device-Free Probabilistic Fingerprinting // IEEE Transactions on Vehicular Technology. 2018. P. 5217–5230. https://doi.org/10.1109/TVT.2018.2810307
19. Yu N., Zhan X., Zhao S., Wu Y., Feng R. A Precise Dead Reckoning Algorithm Based on Bluetooth and Multiple Sensors // IEEE Internet Things Journal. 2018. P. 336–351. https://doi.org/10.1109/JIOT.2017.2784386
20. Sadowski S., Spachos P. RSSI-Based Indoor Localization with the IoT // IEEE Access. 2018. P. 30149–30161. https://doi.org/10.1109/ACCESS.2018.2843325
21. Dong Y., Shan F., Dou G., Cui Y. The Research and Application of Indoor Location Algorithm Based on Wireless Sensor Network // IEEE 3rd International Conference Communication Software and Networks. 2011. P. 719–722.
22. Lo L., Li C. Passive UHF-RFID Localization Based on the Similarity Measurement of Virtual Reference Tags // IEEE Trans. Instrum. Meas. 2018. P. 2926–2933. https://doi.org/10.1109/TIM.2018.2869408
23. Cha J.H., Kim Y.J. A Dual-Band Low-Power-Consumption Active RFID Tag Based on a Meander FPCB Antenna for Subway Vehicle Management // J Electromagn. Eng. Sci. 2021. P. 71–77. https://doi.org/10.26866/jees.2021.21.1.71
24. Škiljo M., Šolić P., Blažević Z., Perković T. Analysis of Passive RFID Applicability in a Retail Store: What Can We Expect? // Sensors. 2020. https://doi.org/10.3390/s20072038
25. Li J.-Q., Feng G., Wei W., Luo C., Cheng L., Wang H., Song H., Ming Z. PSOTrack: A RFID-Based System for Random Moving Objects Tracking in Unconstrained Indoor Environment // IEEE Internet Things J. 2018. P. 4632–4641. https://doi.org/10.1109/JIOT.2018.2795893
26. Hanssens B., Plets D., Tanghe E., Oestges C., Gaillot D.P., Lienard M., Li T., Steendam H., Martens L., Joseph W. An Indoor Variance-Based Localization Technique Utilizing the UWB Estimation of Geometrical Propagation Parameters // IEEE Transactions on Antennas and Propagation. 2018. P. 2522–2533. https://doi.org/10.1109/TAP.2018.2810340
27. Nemer I., Sheltami T., Shakshuki E. Performance evaluation of range-free localization algorithms for wireless sensor networks // Personal and Ubiquitous Computing 25. 2021. P. 177–203. https://doi.org/10.1007/s00779-020-01370-x
28. Betti Sorbelli F., Pinotti C.M., Silvestri S., K. S. Measurement Errors in Range-based Localization Algorithms for UAVs: Analysis and Experimentation // IEEE Transactions on Mobile Computing. 2020. P. 1291–1304. https://doi.org/10.1109/TMC.2020.3020584
29. Pakanon N., Chamchoy M., Supanakoon P. Study on Accuracy of Trilateration Method for Indoor Positioning with BLE Beacons // 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST). 2020. https://doi.org/10.1109/ICEAST50382.2020.9165464
30. Yandex IoT Core. URL: https://cloud.yandex.ru/services/iot-core last accessed 2022/02/19.
31. Yandex Cloud Functions. URL: https://cloud.yandex.ru/services/functions last accessed 2022/02/25.