Анализ и разработка конвейера MLOps для развертывания моделей машинного обучения

Main Article Content

Рустем Рафикович Ямиков
Карен Альбертович Григорян

Аннотация

Рост числа IT-продуктов с внедренными элементами машинного обучения (Machine Learning – ML) обуславливает повышение актуальности автоматизации процессов машинного обучения. Использование методов MLOps направлено на обеспечение обучения и эффективного развертывания приложений с производственной среде, автоматизируя решение побочных инфраструктурных вопросов слабо связанных с непосредственно разработкой модели.


Мы рассматриваем компоненты, принципы и подходы MLOps и анализируем существующие платформы и решения для построения конвейеров машинного обучения. Кроме того, предлагаем подход к построению конвейера машинного обучения на основе основных инструментов DevOps и библиотек с открытым исходным кодом.

Article Details

Библиографические ссылки

1. Makinen S., Skogstrom H., Laaksonen E., Mikkonen T. Who Needs MLOps: What Data Scientists Seek to Accomplish and How Can MLOps Help? // Software Engineering for AI (WAIN) of 43rd International Conference on Software Engineering (ICSE). 2021.
2. Van der Meulen R., McCall T. Gartner Says Nearly Half of CIOs Are Planning to Deploy Artificial Intelligence // Gartner. 2018. URL: https://www.gartner.com/en/newsroom/press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-deploy-artificial-intelligence (дата обращения: 01.06.2022).
3. Posoldova A. Machine Learning Pipelines: From Research to Production // IEEE Potentials. 2020. Vol. 39, No. 6. P. 38–42. https://doi.org/10.1109/MPOT.2020.3016280
4. Alla S., Adari S.K. What is mlops? // In: Beginning MLOps with MLFlow. Berkeley: Apress, 2021. P. 79–124.
5. Gift N., Deza A. Practical MLOps. O'Reilly Media, Inc., 2021.
6. Symeonidis G., Nerantzis E., Kazakis A., Papakostas G.A. MLOps – Definitions, Tools and Challenges // IEEE Annual Computing and Communication Workshop and Conference (CCWC). Las Vegas. 2022. Vol. 12. P. 453–460. https://doi.org/10.48550/arXiv.2201.00162
7. Chen L. Continuous Delivery: Huge Benefits, but Challenges Too // IEEE Software. 2015. Vol. 32. P. 50–54. https://doi.org/10.1109/MS.2015.27
8. John M., Olsson H., Bosch J. Towards MLOps: A Framework and Maturity Model // Euromicro Conference on Software Engineering and Advanced Applications (SEAA). Palermo. 2021. Vol. 47. P. 1–8. https://doi.org/10.1109/SEAA53835.2021.00050
9. MLOps: Continuous delivery and automation pipelines in machine learning // Google Cloud. 2021. URL: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning (дата обращения: 03.07.2021).
10. Machine Learning operations maturity model // Microsoft. URL: https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/ mlops-maturity-model, last accessed 2022/05/30.
11. Kreuzberger D., Kühl N., Hirschl S. Machine Learning Operations (MLOps): Overview, Definition, and Architecture // arXiv preprint arXiv:2205.02302. 2022. https://doi.org/10.48550/arXiv.2205.02302
12. MLOps Principles // MLOps. URL: https://ml-ops.org/content/mlops-principles (дата обращения: 03.07.2021).
13. Yandex DataSphere // Yandex Cloud. URL: https://cloud.yandex.ru/services/datasphere, (дата обращения: 05.03.2022).
14. Проект // Yandex datasphere документация. URL: https://cloud.yandex.ru/docs/datasphere/concepts/project, (дата обращения: 05.03.2022).
15. Развертывание эксплуатации моделей // Yandex datasphere документация. URL: https://cloud.yandex.ru/docs/datasphere/concepts/deploy, (дата обращения: 05.03.2022).
16. MLFlow. URL: https://mlflow.org (дата обращения: 28.12.2021).
17. MLflow Tracking // MLflow. URL: https://mlflow.org/docs/latest/tracking.html (дата обращения: 28.12.2021).
18. MLflow Projects // MLflow. URL: https://mlflow.org/docs/latest/projects.html, (дата обращения: 28.12.2021).
19. MLflow Models // MLflow. URL: https://mlflow.org/docs/latest/models.html (дата обращения: 28.12.2021).
20. MLflow Model Registry // MLflow. URL: https://mlflow.org/docs/latest/model-registry.html (дата обращения: 28.12.2021).
21. Khandelwal N. MLflow Alternatives for Data Version Control: DVC vs. MLflow // Censious. URL: https://censius.ai/blogs/dvc-vs-mlflow (дата обращения: 30.05.2022).
22. Hewage N., Meedeniya D. Machine Learning Operations: A Survey on MLOps Tool Support // arXiv preprint arXiv:2202.10169. 2022. https://doi.org/10.48550/arXiv.2202.10169
23. Introduction // Kubeflow documentation. URL: https://www.kubeflow.org/docs/started/introduction (дата обращения: 11.03.2022).
24. What is Kubeflow? // Kubeflow. URL: https://www.kubeflow.org (дата обращения: 11.03.2022).
25. Architecture // Kubeflow documentation. URL: https://www.kubeflow.org/docs/started/architecture (дата обращения: 11.03.2022).
26. Kaewsanmua K. Best 8 Machine Learning Model Deployment Tools That You Need to Know // Neptune. 2021. URL: https://neptune.ai/blog/best-8-machine-learning-model-deployment-tools (дата обращения: 01.06.2022).
27. DVC. URL: https://dvc.org (дата обращения: 27.12.2021).
28. Zhao Y. MLOps: Data versioning with DVC — Part Ⅰ // Medium. 2020. URL: https://yizhenzhao.medium.com/mlops-data-versioning-with-dvc-part-ⅰ-8b3221df8592 (дата обращения: 27.12.2021).
29. Mesquita D. The ultimate guide to building maintainable Machine Learning pipelines using DVC // Towards data science. 2020. URL: https://towardsdatascience.com/the-ultimate-guide-to-building-maintainable-machine-learning-pipelines-using-dvc-a976907b2a1b (дата обращения: 27.12.2021).
30. CML Documentation // CML. URL: https://cml.dev/doc (дата обращения: 27.12.2021).
31. Continuous Integration and Deployment for Machine Learning // DVC. URL: https://dvc.org/doc/use-cases/ci-cd-for-machine-learning (дата обращения: 27.12.2021).
32. Continuous Integration with CML and Github Actions // MLOps Guide. URL: https://mlops-guide.github.io/CICD/cml_testing (дата обращения: 27.12.2021).
33. Kubernetes Documentation // Kubernetes. URL: https://kubernetes.io/docs/hom (дата обращения: 22.05.2022).
34. What is Prometheus? // Prometheus. URL: https://prometheus.io/docs/introduction/overview
35. Grafana // Grafana Labs. URL: https://grafana.com/grafana (дата обращения: 22.05.2022).


Наиболее читаемые статьи этого автора (авторов)