Methodology of Network Analysis of Scientific Publications

Main Article Content

Abstract

The relevance of the issues of the analysis of scientific publications is due to the fact that with the of Internet technologies, it became possible to collect data on the publication citation network. Meanwhile, the current approach to the analysis of scientific publications is based on bibliometric indicators that take into account only the number of citations. However, network analysis, which is mainly used in the study of social networks, is becoming increasingly widely used. The author has developed a methodology that allows for an effective analysis of scientific publications based on network analysis methods alternative to bibliometric methods. As criteria for evaluating scientific publications based on network analysis, relevant measures of the centrality of the citation network nodes are established: centrality by degree of connectivity; centrality by proximity to other nodes; centrality by mediation; centrality by authority; centrality by concentration. The author presented the experiment result that allows validating the developed methodology of network analysis of the scientific publications significance. Scientometric databases were used as primary sources of data on publications, which make it possible to track the citation of publications and identify relevant citation networks. The application of the proposed network analysis methodology contributes to the identification of important publications in the development of the scientific direction.

Article Details

References

1. Гонашвили А.С. Наукометрические базы данных и работа с ними : науч.-метод. пособие / ун-т при Межпарламент. ассамблее ЕврАзЭС. СПб.: Изд-во ун-та при МПА ЕврАзЭС, 2020. 57 с.
2. H-index. URL: https://en.wikipedia.org/wiki/H-index (дата обращения: 15.04.2023).
3. Impact factor. URL: https://ru.wikipedia.org/wiki/Impact factor (дата обращения: 15.04.2023).
4. Lu Z., Ma Y., Song L. Patent Citation Network Analysis Based on Improved Main Path Analysis: Mapping Key Technology Trajectory // Advances in Artificial Intelligence and Security (ICAIS 2021): Communications in Computer and Information Science. Springer: Cham, 2021. Vol. 1423. P. 158–171. https://doi.org/10.1007/978-3-030-78618-2_13.
5. Wang J., Cheng Q., Lu W. et al. A term function–aware keyword citation network method for science mapping analysis // Information Processing & Management. Vol. 60, no. 4. P. 103405. https://doi.org/10.1016/j.ipm.2023.103405.
6. Ольгина И.Г., Пронин И.В., Абдрахманов А.Н. Построение графовых моделей сети цитирования научных публикаций // Системы управления, информационные технологии и математическое моделирование: материалы II Всерос. науч.-практ. конф. с междунар. участием (Омск, 19–20 мая 2020 г.). Омск: ОмГТУ, 2020. Т. I. С. 118–125.
7. Zhao F., Zhang Y., Lu J. et al. Measuring academic influence using heterogeneous author-citation networks // Scientometrics. 2019. Vol. 118. P. 1119–1140. https://doi.org/10.1016/10.1007/s11192-019-03010-5.
8. Ji P., Jin J., Ke Z. T., L. W. Co-citation and Co-authorship Networks of Statisticians // Journal of Business & Economic Statistics. 2022. Vol. 40, no. 2. P. 469–485. https://doi.org/10.1080/07350015.2021.1978469.
9. Luc P.T., Lan P.X., Le A.N.H., Tran B.T. A Co-Citation and Co-Word Analysis of Social Entrepreneurship Research // Journal of Social Entrepreneurship. 2022. Vol. 13, No. 3. P. 324–339. https://doi.org/10.1080/19420676.2020.1782971.
10. Печников А.А., Чебуков Д.Е. Анализ соавторства в математических журналах Math-Net.Ru // Научный сервис в сети Интернет: тр. XXIV Всерос. науч. конф. (19-22 сент. 2022 г.). М.: ИПМ им. М.В. Келдыша, 2022. С. 190-202. https://doi.org/10.20948/abrau-2022-5.
11. Gómez S. Centrality in Networks: Finding the Most Important Nodes // Business and Consumer Analytics: New Ideas / P. Moscato, N. Jane de Vries. Springer: Cham, 2019. P. 401–433. https://doi.org/10.1007/978-3-030-06222-4_8.
12. Das K., Samanta S., Pa M. Study on centrality measures in social networks: a survey // Social Network Analysis and Mining. 2018. Vol. 8. P. 13. https://doi.org/10.1007/s13278-018-0493-2.
13. Бредихин С.В., Ляпунов В.М., Щербакова Н.Г. Мера важности научной периодики – «центральность по посредничеству» // Проблемы информатики. 2014. №3. C. 53–64.
14. Печников А.А., Чебуков Д.Е. Структура графа цитирования журналов Math-Net.Ru // Научный сервис в сети Интернет: тр. XXIII Всерос. науч. конф. (20–23 сент. 2021 г.). М.: ИПМ им. М.В. Келдыша, 2021. С. 265–278. https://doi.org/10.20948/abrau-2021-2.
15. Ольгина И.Г. Метод определения важных узлов сети цитирования научных публикаций // Вестник компьютерных и информационных технологий. 2021. Т. 18, № 5 (203). С. 3–10. https://doi.org/10.14489/vkit.2021.05.pp.003-010.
16. Freeman L.C. Centrality in social networks conceptual clarification // Social Networks. 1978. No. 31. P. 215–239.
17. Newman M.E.J. Scientific collaboration networks. I. Network construction and fundamental results // Physical Review. 2001. Vol. 64, No. 1. P. 016131. https://doi.org/10.1103/PhysRevE.64.016131.
18. Brandes U. A faster algorithm for betweenness centrality // The Journal of Mathematical Sociology. 2001. Vol. 25, No. 2. P. 163–177.
19. Kleinberg J. Authoritative sources in a hyperlinked environment // Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA 98). 1998. P. 668–677.
20. Leon C., Perez J. Authority Centrality and Hub Centrality as metrics of systemic importance of financial market infrastructures // Borradores de Economia. 2013. Vol. 754. P. 1–25. https://doi.org/10.2139/ssrn.2290271.
21. Бредихин С.В., Ляпунов В.М., Щербакова Н.Г., Юргенсон А.Н. Параметры «центральности» узлов сети цитирования научных статей // Проблемы информатики. 2016. № 1. С. 39–57.
22. Shibata N., Kajikawa Y., Takeda Y. et al. Early detection of innovations from citation networks // International Conference on Industrial Engineering and Engineering Management (Hong Kong, 8–11 December 2009). IEEE, 2009. https://doi.org/10.1109/ieem.2009.5373444.
23. Baglioni M., Geraci F., Pellegrini M., Lastres E. Fast Exact Computation of betweenness Centrality in Social Networks // Advances in Social Networks Analysis and Mining: International Conference 2012 IEEE/ACM (Istanbul, 26–29 August 2012). P. 450–456. https://doi.org/10.1109/ASONAM.2012.79.
24. Farhan M.T., Darwiyanto E., Asror I. Analysis of Hubs and Authorities Centrality Using Probabilistic Affinity Index (PAI) on directed-weighted graph in Social Network Analysis // Journal of Physics: Conference Series. 2019. Vol. 1192. P. 012005. https://doi.org/10.1088/1742-6596/1192/1/012005.
25. Marra A., Antonelli P., Dell’Anna L., Pozzi C. A network analysis using metadata to investigate innovation in clean-tech – Implications for energy policy // Energy Policy. 2015. Vol. 86. P. 17–26.
26. Baronchelli A., Ferrer-i-Cancho R, Pastor-Satorras R., Chater N., Christiansen Morten N. Networks in cognitive science // Trends in cognitive sciences. 2013. Vol. 17. Iss. 7. P. 348–360. https://doi.org/10.1016/j.tics.2013.04.010.
27. Karuza E.A., Thompson-Schill Sh.L., Bassett Danielle S. Local patterns to global architectures: influences of network topology on human learning // Trends in cognitive sciences. 2016. Vol. 20. Iss. 8. P. 629–640. https://doi.org/10.1016/j.tics.2016.06.003.
28. Merseal Hannah M., Beaty Roger E., Kenett Yoed N., Lloyd-Co J., Orjan de Manzano, Norgaard Martin. Representing melodic relationships using network science // Cognition. 2023. Vol. 233. P. 105362. https://doi.org/10.1016/j.cognition.2022.105362.
29. Barabasi A.-L. Scale-free networks: Aa decade and beyond // Science. 2009. Vol. 325. Iss. 5939. P. 412–413.
30. Кошелева Н.Н. Корреляционный анализ и его применение для подсчета ранговой корреляции Спирмена // Актуальные проблемы гуманитарных и естественных наук. 2012. № 5. С. 23–26.
31. Ермолаев О.Ю. Математическая статистика для психологов. М.: Московский психолого-социальный институт: Флинта, 2003. 366 с.