Methodology of Network Analysis of Scientific Publications
Main Article Content
Abstract
The relevance of the issues of the analysis of scientific publications is due to the fact that with the of Internet technologies, it became possible to collect data on the publication citation network. Meanwhile, the current approach to the analysis of scientific publications is based on bibliometric indicators that take into account only the number of citations. However, network analysis, which is mainly used in the study of social networks, is becoming increasingly widely used. The author has developed a methodology that allows for an effective analysis of scientific publications based on network analysis methods alternative to bibliometric methods. As criteria for evaluating scientific publications based on network analysis, relevant measures of the centrality of the citation network nodes are established: centrality by degree of connectivity; centrality by proximity to other nodes; centrality by mediation; centrality by authority; centrality by concentration. The author presented the experiment result that allows validating the developed methodology of network analysis of the scientific publications significance. Scientometric databases were used as primary sources of data on publications, which make it possible to track the citation of publications and identify relevant citation networks. The application of the proposed network analysis methodology contributes to the identification of important publications in the development of the scientific direction.
Keywords:
Article Details
References
2. H-index. URL: https://en.wikipedia.org/wiki/H-index (дата обращения: 15.04.2023).
3. Impact factor. URL: https://ru.wikipedia.org/wiki/Impact factor (дата обращения: 15.04.2023).
4. Lu Z., Ma Y., Song L. Patent Citation Network Analysis Based on Improved Main Path Analysis: Mapping Key Technology Trajectory // Advances in Artificial Intelligence and Security (ICAIS 2021): Communications in Computer and Information Science. Springer: Cham, 2021. Vol. 1423. P. 158–171. https://doi.org/10.1007/978-3-030-78618-2_13.
5. Wang J., Cheng Q., Lu W. et al. A term function–aware keyword citation network method for science mapping analysis // Information Processing & Management. Vol. 60, no. 4. P. 103405. https://doi.org/10.1016/j.ipm.2023.103405.
6. Ольгина И.Г., Пронин И.В., Абдрахманов А.Н. Построение графовых моделей сети цитирования научных публикаций // Системы управления, информационные технологии и математическое моделирование: материалы II Всерос. науч.-практ. конф. с междунар. участием (Омск, 19–20 мая 2020 г.). Омск: ОмГТУ, 2020. Т. I. С. 118–125.
7. Zhao F., Zhang Y., Lu J. et al. Measuring academic influence using heterogeneous author-citation networks // Scientometrics. 2019. Vol. 118. P. 1119–1140. https://doi.org/10.1016/10.1007/s11192-019-03010-5.
8. Ji P., Jin J., Ke Z. T., L. W. Co-citation and Co-authorship Networks of Statisticians // Journal of Business & Economic Statistics. 2022. Vol. 40, no. 2. P. 469–485. https://doi.org/10.1080/07350015.2021.1978469.
9. Luc P.T., Lan P.X., Le A.N.H., Tran B.T. A Co-Citation and Co-Word Analysis of Social Entrepreneurship Research // Journal of Social Entrepreneurship. 2022. Vol. 13, No. 3. P. 324–339. https://doi.org/10.1080/19420676.2020.1782971.
10. Печников А.А., Чебуков Д.Е. Анализ соавторства в математических журналах Math-Net.Ru // Научный сервис в сети Интернет: тр. XXIV Всерос. науч. конф. (19-22 сент. 2022 г.). М.: ИПМ им. М.В. Келдыша, 2022. С. 190-202. https://doi.org/10.20948/abrau-2022-5.
11. Gómez S. Centrality in Networks: Finding the Most Important Nodes // Business and Consumer Analytics: New Ideas / P. Moscato, N. Jane de Vries. Springer: Cham, 2019. P. 401–433. https://doi.org/10.1007/978-3-030-06222-4_8.
12. Das K., Samanta S., Pa M. Study on centrality measures in social networks: a survey // Social Network Analysis and Mining. 2018. Vol. 8. P. 13. https://doi.org/10.1007/s13278-018-0493-2.
13. Бредихин С.В., Ляпунов В.М., Щербакова Н.Г. Мера важности научной периодики – «центральность по посредничеству» // Проблемы информатики. 2014. №3. C. 53–64.
14. Печников А.А., Чебуков Д.Е. Структура графа цитирования журналов Math-Net.Ru // Научный сервис в сети Интернет: тр. XXIII Всерос. науч. конф. (20–23 сент. 2021 г.). М.: ИПМ им. М.В. Келдыша, 2021. С. 265–278. https://doi.org/10.20948/abrau-2021-2.
15. Ольгина И.Г. Метод определения важных узлов сети цитирования научных публикаций // Вестник компьютерных и информационных технологий. 2021. Т. 18, № 5 (203). С. 3–10. https://doi.org/10.14489/vkit.2021.05.pp.003-010.
16. Freeman L.C. Centrality in social networks conceptual clarification // Social Networks. 1978. No. 31. P. 215–239.
17. Newman M.E.J. Scientific collaboration networks. I. Network construction and fundamental results // Physical Review. 2001. Vol. 64, No. 1. P. 016131. https://doi.org/10.1103/PhysRevE.64.016131.
18. Brandes U. A faster algorithm for betweenness centrality // The Journal of Mathematical Sociology. 2001. Vol. 25, No. 2. P. 163–177.
19. Kleinberg J. Authoritative sources in a hyperlinked environment // Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA 98). 1998. P. 668–677.
20. Leon C., Perez J. Authority Centrality and Hub Centrality as metrics of systemic importance of financial market infrastructures // Borradores de Economia. 2013. Vol. 754. P. 1–25. https://doi.org/10.2139/ssrn.2290271.
21. Бредихин С.В., Ляпунов В.М., Щербакова Н.Г., Юргенсон А.Н. Параметры «центральности» узлов сети цитирования научных статей // Проблемы информатики. 2016. № 1. С. 39–57.
22. Shibata N., Kajikawa Y., Takeda Y. et al. Early detection of innovations from citation networks // International Conference on Industrial Engineering and Engineering Management (Hong Kong, 8–11 December 2009). IEEE, 2009. https://doi.org/10.1109/ieem.2009.5373444.
23. Baglioni M., Geraci F., Pellegrini M., Lastres E. Fast Exact Computation of betweenness Centrality in Social Networks // Advances in Social Networks Analysis and Mining: International Conference 2012 IEEE/ACM (Istanbul, 26–29 August 2012). P. 450–456. https://doi.org/10.1109/ASONAM.2012.79.
24. Farhan M.T., Darwiyanto E., Asror I. Analysis of Hubs and Authorities Centrality Using Probabilistic Affinity Index (PAI) on directed-weighted graph in Social Network Analysis // Journal of Physics: Conference Series. 2019. Vol. 1192. P. 012005. https://doi.org/10.1088/1742-6596/1192/1/012005.
25. Marra A., Antonelli P., Dell’Anna L., Pozzi C. A network analysis using metadata to investigate innovation in clean-tech – Implications for energy policy // Energy Policy. 2015. Vol. 86. P. 17–26.
26. Baronchelli A., Ferrer-i-Cancho R, Pastor-Satorras R., Chater N., Christiansen Morten N. Networks in cognitive science // Trends in cognitive sciences. 2013. Vol. 17. Iss. 7. P. 348–360. https://doi.org/10.1016/j.tics.2013.04.010.
27. Karuza E.A., Thompson-Schill Sh.L., Bassett Danielle S. Local patterns to global architectures: influences of network topology on human learning // Trends in cognitive sciences. 2016. Vol. 20. Iss. 8. P. 629–640. https://doi.org/10.1016/j.tics.2016.06.003.
28. Merseal Hannah M., Beaty Roger E., Kenett Yoed N., Lloyd-Co J., Orjan de Manzano, Norgaard Martin. Representing melodic relationships using network science // Cognition. 2023. Vol. 233. P. 105362. https://doi.org/10.1016/j.cognition.2022.105362.
29. Barabasi A.-L. Scale-free networks: Aa decade and beyond // Science. 2009. Vol. 325. Iss. 5939. P. 412–413.
30. Кошелева Н.Н. Корреляционный анализ и его применение для подсчета ранговой корреляции Спирмена // Актуальные проблемы гуманитарных и естественных наук. 2012. № 5. С. 23–26.
31. Ермолаев О.Ю. Математическая статистика для психологов. М.: Московский психолого-социальный институт: Флинта, 2003. 366 с.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.