Semantic Annotation of Mathematical Formulas in PDF-Documents

Main Article Content

Abstract

This article provides an overview of existing solutions for semantic analysis of mathematical documents, and also presents a method for automatic semantic analysis of documents in PDF format. This method searches for local variables in the text of the article, extracts their definitions and connects concepts with formulas. The advantage of the method over the existing ones is independence from the markup of the original PDF document, which expands the scope of the method. We provide estimates of recall, precision and F-measure for algorithms for finding variables and linking local variables with formulas. The resulting semantic markup of the document will be used to create a collection of documents suitable for the semantic formula search service, which is part of the set of services of the Lobachevskii-DML digital publishing system.

Article Details

References

1. Nevzorova O., Zhiltsov N., Zaikin D., Zhibrik O., Kirillovich A., Nevzorov V., Birialtsev E. Bringing math to LOD: A semantic publishing platform prototype for scientific collections in mathematics // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2013. Vol. 8218 LNCS. No. 1. P. 379–394.
2. Bertin M., Atanassova I. Hybrid Approach for the Semantic Processing of Scientific Papers // Semantic Publishing Challenge Track in 11th European Semantic Web Conference (ESWC 2014). 2014. P. 1–5.
3. Ciancarini P., Di Iorio A., Nuzzolese A.G., Silvio P., Fabio V. Semantic annotation of scholarly documents and citations // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2013. Vol. 8249 LNAI. P. 336–347.
4. Ronzano F., Del Bosque G.C., Saggion H. CEUR-WS proceedings: Towards the automatic generation of highly descriptive scholarly publishing linked datasets // Communications in Computer and Information Science. 2014. Vol. 475. P. 83–88.
5. Ahmad R., Afzal M.T., Qadir M.A. Information extraction from PDF sources based on rule-based system using integrated formats // Communications in Computer and Information Science. 2016. Vol. 641. P. 293–308.
6. Greiner-Petter A., Youssef A., Ruas T., Miller, Bruce R., Schubotz M., Aizawa A., Gipp B. Math-word embedding in math search and semantic extraction // Scientometrics. 2020. Vol. 125. No. 3. P. 3017–3046.
7. Wolska M., Grigore M. Symbol declarations in mathematical writing // Proceedings of the 3rd Workshop on Digital Mathematics Libraries. 2010. P. 119–127.
8. Líška M., Sojka P., Ružička M., Mravec P. Web interface and collection for mathematical retrieval WebMIaS and MREC // DML 2011 – Towards a Digital Mathematics Library, Proceedings. 2011. P. 77–84.
9. Schubotz M., Greiner-Petter A., Scharpf P., Meuschke N., Cohl H.S., Gipp B. Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context // Proceedings of the ACM/IEEE Joint Conference on Digital Libraries. New York, NY, USA: ACM. 2018. P. 233–242.
10. Nevzorova O., Kirillovich A., Nevzorov V., Nikolaev K. The semantic context models of mathematical formulas in scientific papers // CEUR Workshop Proceedings. 2018. Vol. 2277. P. 33–40.
11. Elizarov A.M., Kirillovich A.V., Lipachev E.K., Nevzorova O.A. OntoMathPRO: Ontology of Mathematical Knowledge // Dokl. Math. 2022. https://doi.org/10.1134/S1064562422700016


Most read articles by the same author(s)