Development of a Method for User Segmentation using Clustering Algorithms and Advanced Analytics

Main Article Content

Abstract

The article is devoted to the creation of an effective solution for user segmentation. The article presents an analysis of existing user segmentation services, an analysis of approaches to user segmentation (ABCDx segmentation, demographic segmentation, segmentation based on a user journey map), an analysis of clustering algorithms (K-means, Mini-Batch K-means, DBSCAN, Agglomerative Clustering, Spectral Clustering). The study of these areas is aimed at creating a “flexible” segmentation solution that adapts to each user sample. Dispersion analysis (ANOVA test), analysis of clustering metrics is also used to assess the quality of user segmentation. With the help of these areas, an effective solution for user segmentation has been developed using advanced analytics and machine learning technology.

Article Details

References

1. Churin V.V. Rol' marketingovyh issledovanij v proektnoj dejatel'nosti: Uchebno-metodicheskoe posobie // Moskovskij avtomobil'no-dorozhnyj gosudarstvennyj tehnicheskij universitet (MADI). 2019. S. 1–111.
2. An J., Kwak H., Jung S., Salminen J., Jansen B. Customer segmentation us-ing online platforms: isolating behavioral and demographic segments for persona creation via aggregated user data // Social Network Analysis and Mining. 2018. P. 1–19.
3. Starkova N V. Klasterizacija stran Evropy po demograficheskim priznakam // Molodoj uchenyj. 2016. № 9 (113). S. 418–426. URL: https://moluch.ru/archive/113/28811/ (date of the application: 06.06.2022)
4. Cherezov D.S. Obzor osnovnyh metodov klassifikacii i klasteri-zacii dannyh // Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Sistemnyj analiz i informacionnye tehnologii. 2009. №2. S. 23–27. URL: https://rucont.ru/efd/519732 (date of the application: 06.06.2022)
5. Jagabathula S., Rusmevichientong P., Venkataraman A., Zhao X. Estimating Large-Scale Tree Logit Models // NYU Stern School of Business, 2022.
6. Amigó E., Gonzalo J., Artiles J. A comparison of extrinsic clustering evaluation metrics based on formal constraints // Information Retrieval volume. 2009. No. 12. P. 461–486.
7. Topalovich N. Algoritmy klasterizacii v mashinnom obuchenii // Molodoj uchenyj. 2020. № 52 (342). S. 47–49. URL: https://moluch.ru/archive/342/77003/ (date of the application: 06.06.2022)
8. Rodriguez M.Z., Comin C.H., Casanova D., Bruno O.M., Amancio D.R., Costa L.F., Rodrigues F.A. Clustering algorithms: A comparative approach // PLoS One. 2019. No. 14. P. 15–30.
9. Bajkov I.I. Metod ansamblirovanija algoritmov klasterizacii dlja reshenija zadachi sovmestnoj klasterizacii // Sensornye sistemy. 2021. T. 35. № 1. S. 43–49.