On Some Properties of Collaboration Graphs of Scientists in Math-Net.Ru

Main Article Content

Abstract

A study of two graphs of scientific cooperation based on co-authorship and citation according to the all-Russian mathematical portal was conducted Math-Net.Ru. A citation-based scientific collaboration graph is a directed graph without loops and multiple edges, whose vertices are the authors of publications, and arcs connect them when there is at least one publication of the first author that cites the publication of the second author. A co-authorship graph is an undirected graph in which the vertices are the authors, and the edges record the co-authorship of two authors in at least one article. The customary study of the main characteristics of both graphs is carried out: diameter and average distance, connectivity components and clustering. In both graphs, we observe a similar connectivity structure – the presence of a giant component and a large number of small components. The similarity and difference of scientific cooperation through co-authorship and citation is noted.

Article Details

References

1. Kas M., Carley K.M., Carley L.R. Trends in science networks: understanding structures and statistics of scientific networks // Social Network Analysis and Mining. 2012. No. 2. P. 169–187.
2. Евин И.А., Хабибуллин Т.Ф. Социальные сети // Компьютерные исследования и моделирование. 2012. Т. 4, № 2. С. 423–430.
3. Дадалко В.А., Дадалко С.В. Метрические исследования как форма анализа научной продуктивности // Аналитика и научное проектирование. 2019. №2. С. 125–135.
4. Newman M.E.J. The structure of scientific collaboration networks // Proceedings of the National Academy of Sciences of the USA. 2001. No. 98 (2). P. 404–409.
5. Kas M., Carley K.M., Carley L.R. Trends in science networks: understanding structures and statistics of scientific networks // Social Network Analysis and Mining. 2012. No. 2. P. 169–187.
6. Chebukov D., Izaak A., Misyurina O., Pupyrev Yu., Zhizhchenko A. Math-Net.Ru as a digital archive of the Russian mathematical knowledge from the XIX century to today // Lecture Notes in Comput. Sci. 2013. Vol. 7961. P. 344–348.
7. Malliaros F.D., Vazirgiannis M. Clustering and community detection in directed networks: A survey // Physics Reports. 2013. Vol. 533, Iss. 4. P. 95–142.
8. Newman M.E., Girvan M. Finding and evaluating community structure in networks // Physical Review E. 2004. Vol. 69(2). P 026113.
9. Blondel V.D., Guillaume J-L., Lambiotte R., Lefebvre E. Fast unfolding of communities in large networks // Journal of Statistical Mechanics: Theory and Experiment. 2008. P 10008.
10. Апанович З.В., Винокуров П.С. Методы и средства визуализации сетей соавторства и сетей цитирования больших научных порталов // Электронные библиотеки. 2011. Т. 14, Вып. 3. https://elbib.ru/article/view/308.
11. Kennedy D. Multiple Authors, Multiple Problems // Science. 2003. Vol. 301(5634). P. 733.