Strong and Weak Relations in the Academic Web

Main Article Content

Andrey Anatolievich Pechnikov

Abstract

The web graph is the most popular model of real Web fragments used in Web science. The study of communities in the web graph contributes to a better understanding of the organization of the fragment of the Web and the processes occurring in it. It is proposed to allocate a communication graph in a web graph containing only those vertices (and arcs between them) that have counter arcs, and in it to investigate the problem of splitting into communities. By analogy with social studies, connections realized through edges in a communication graph are proposed to be called "strong" and all others "weak". Thematic communities with meaningful interpretations are built on strong connections. At the same time, weak links facilitate communication between sites that do not have common features in the field of activity, geography, subordination, etc., and basically preserve the coherence of the fragments of the Web even in the absence of strong links. Experiments conducted for a fragment of the scientific and educational Web of Russia show the possibility of meaningful interpretation of the results and the prospects of such an approach.

Article Details

Author Biography

Andrey Anatolievich Pechnikov

Chief Research Associate of the Institute of Applied Mathematical Research of the Karelian Research Centre of the Russian Academy of Sciences. Research interests include mathematical modeling, discrete optimization, webometrics.

References

Newman M.E.J. The structure of scientific collaboration networks // Proceedings of the National Academy of Sciences of the USA. 2001. No 98 (2). P. 404–409. https://doi.org/10.1073/pnas.98.2.404

Thelwall M., Wilkinson D. Graph structure in three national academic Webs: Power laws with anomalies // Journal of the American Society for Information Science and Technology. 2003. №54(8). P. 706–712.

Ortega J.L., Aguillo I.F. Visualization of the Nordic academic web: Link analysis using social network tools // Information Processing and Management. 2008. Vol. 44, Iss. 4. P. 1624–1633.

Печников А.А. Методы исследования регламентируемых тематических фрагментов Web // Труды Института системного анализа Российской академии наук. Серия: Прикладные проблемы управления макросистемами. 2010. Т. 59. С. 134–145.

Watts D.J.; Strogatz S.H. Collective dynamics of 'small-world' networks // Nature. No 393. P. 440–442.

Ермолин Н.А., Мазалов В.В., Печников А.А. Теоретико-игровые методы нахождения сообществ в академическом Вебе // Труды СПИИРАН. 2017. Вып. 55. C. 237–254.

Pechnikov A.A., Chernobrovkin D.I. Adaptive Crawler for External Hyperlinks Search and Acquisition // Automation and Remote Control. 2014. V. 75. No 3. Р. 587–593.

Головин А.С., Печников А.А. База данных внешних гиперссылок для исследования фрагментов Веба // Информационная среда вуза XXI века: материалы VII Всероссийской научно-практической конференции (23–27 сентября 2013 г.). Петрозаводск, 2013. С. 55–57.

The Open Graph Viz Platform. URL: https://gephi.org

Blondel V.D., Guillaume J-L., Lambiotte R., Lefebvre E. Fast unfolding of communities in large networks // J. of Statistical Mechanics: Theory and Experiment. 2008. P. 10008.

Newman M.E., Girvan M. Finding and evaluating community structure in networks // Physical Review E. 2004. V. 69(2). P. 026113.

Левкина Л.И. Социально-историческая роль сообществ. М.: Русайнс, 2016. 216 с.

Malliaros F.D., Vazirgiannis M. Clustering and community detection in directed networks: A survey // Physics Reports. 2013. V. 533. Issue 4. P. 95–142.

Granovetter M.S. The Strength of Weak Ties // The American J. of Sociology. 1973. No 78 (6). P. 1360–1380.

Харари Ф. Теория графов. М.: Мир, 1973. 300 с.