Recommender system of text analytics of legal documents

Main Article Content

Денис Сергеевич Зуев
Марат Фаритович Насрутдинов
Айрат Фаридович Хасьянов

Abstract

The paper discusses the use of machine learning mechanisms, natural language analysis and intellectual search in the field of jurisprudence. The main expected results are the methodology for applying text-based analytics and semantic natural language processing (NLP) algorithms in knowledge management cases in different types of legal practice. The obtained results can be applied in the field of education and knowledge management in a wider context, since the study lies at the union of jurisprudence, mathematical and computer linguistics.

We describe a prototype of a multi-agent system of intellectual analysis of legal texts that is capable of identifying general dependencies on the existing database of legal documents, providing legal cases with similar topics, recommending the most likely outcomes of judicial review.

Article Details

Author Biographies

Денис Сергеевич Зуев

PhD, Deputy director for research, Higher Institute of Information Technology an Intelligent Systems.

Марат Фаритович Насрутдинов

Deputy Director for Education at Higher Institute for Information Technology and Information Systems of Kazan Federal University.

Айрат Фаридович Хасьянов

Phd, Director at Higher Institute for Information Technology and Information Systems of Kazan Federal University.

References

1. Peroni S. Semantic Web Technologies and Legal Scholarly Publishing Law, Springer, Governance and Technology Series, 2014. V. 15. doi 10.1007/978-3-319-04777-5
2. Елизаров А. М., Жижченко А. Б., Жильцов Н. Г., Кириллович А. В., Липачёв Е. К. Онтологии математического знания и рекомендательная система для коллекций физико-математических документов //Доклады Академии наук. 2016. Т. 467, № 4. С. 392–395. doi: 10.1134/S1064562416020174
3. Елизаров А. М., Липачёв Е. К., Невзорова О. А., Соловьев В. Д. Методы и средства семантического структурирования электронных математических документов //Доклады Академии наук. 2014. Т. 457, № 6. С. 642–645. doi 10.7868/S0869565214240049
4. Грант С. Ингерсолл, Томас С. Мортон, Эндрю Л. Фэррис. Обработка неструктурированных текстов. Поиск, организация и манипулирование/ Пер. с англ. Слинкин А. А. – М.: ДМК Пресс, 2015. – 414 с.: ил.
5. Зуев Д. С., Марченко А. А., Хасьянов А. Ф. Применение инструментов интеллектуального анализа текстов в юриспруденции // CEUR Workshop Proceedings. 2017. V. 2022. P. 214–218. http://ceur-ws.org/Vol-2022/paper35.pdf
6. Digital Mathematics Library: a vision for the future. International Mathematical Union, 2006. http://www.mathunion.org/fileadmin/IMU/Report/ dml_vision.pdf.
7. Olver P. J. What’s happening with the World Digital Mathematics Library? http://www.math.umn. edu/~olver/t_/wdmlb.pdf
8. Developing a 21st century global library for mathematics research. Washington, D.C.: The National Academies Press, 2014. 131 p. arxiv.org/pdf/1404.1905; http://www.nap.edu/catalog/18619/developing-a-21st-century-global-library-for-mathematics-research.
9. Toschev А., Talanov М. Thinking Lifecycle as an Implementation of Machine Understanding in Software Maintenance Automation Domain// Jezic G., Howlett R., Jain L. (eds) Agent and Multi-Agent Systems: Technologies and Applications. Smart Innovation, Systems and Technologies. 2015. Vol 38. Springer, Cham. doi: 10.1007/978-3-319-19728-9_25
10. Gold N. et al. Understanding Service Oriented Software. IEEE Software. 2004. V. 21, No. 2. P. 71–77.
11. Jones S. Toward an Acceptable Definition of Service. IEEE Software. 2005. V. 22, No. 3. P. 87–93.
12. Fowler M. Microservices a definition of this new architectural term. https://martinfowler.com/articles/microservices.html
13. Ricci F., Rokach L., Shapira B., Kantor P.B. Recommender Systems Handbook. N.Y.: Springer, 2011. 842 p.