Abstract:
In recent years, advances in artificial intelligence (AI) and machine learning have been driven by advances in the development of large language models (LLMs) based on deep neural networks. At the same time, despite its substantial capabilities, LLMs have fundamental limitations such as spontaneous unreliability in facts and judgments; making simple errors that are dissonant with high competence in general; credulity, manifested by a willingness to accept a user's knowingly false claims as true; and lack of knowledge about events that have occurred after training has been completed.
Probably the key reason is that bioinspired intelligence learning occurs through the assimilation of implicit knowledge by an embodied form of intelligence to solve interactive real-world physical problems. Bioinspired studies of the nervous systems of organisms suggest that the cerebellum, which coordinates movement and maintains balance, is a prime candidate for uncovering methods for realizing embodied physical intelligence. Its simple repetitive structure and ability to control complex movements offer hope for the possibility of creating an analog to adaptive neural networks.
This paper explores the bioinspired architecture of the cerebellum as a form of analog computational networks capable of modeling complex real-world physical systems. As a simple example, a realization of embodied AI in the form of a multi-component model of an octopus tentacle is presented, demonstrating the potential in creating adaptive physical systems that learn and interact with the environment.