Designing a Tool for Creating Gameplay through the Systematization of Game Mechanics

Main Article Content

Abstract

A new approach to the development of a tool aimed at simplifying the workflow of a game designer is presented. The requirements are elaborated, the work scenario is developed and the main parameters for the developed tool are specified. The main objective of the tool is to speed up and facilitate the selection of proper game mechanics without the need to spend valuable time on lengthy analysis of other videogame projects.


To provide more effective work of game designers in the selection of game mechanics, we analyzed a variety of approaches to the classification of game mechanics. In the process of the research various methods of classification of game mechanics were considered, the analysis revealed which classifications are more suitable for decomposition of game mechanics. The results of the research allowed us to identify key aspects of game mechanics, which will serve as a foundation for the development of the tool.


This research represents an important step in creating a tool that will optimize the game design process and increase the speed of videogame development.

Article Details

References

1. Gajewski S., el Mawas N., Heutte J. A Systematic Literature Review of Game Design Tools // in International Conference on Computer Supported Education, CSEDU, 2022. Vol. 2.
2. Greenlaw P.S., Herron L.W., Rawdon R.H. Business simulation in industrial and university education // Englewood Cliffs. United States. Prentice-Hall, 1962. 376 p.
3. Schell J. The Art of Game Design: A Book of Lenses. Burlington. United States. Morgan Kaufmann Publishers, 2008. 520 p.
4. Гиммельрейх С.Э. Механика, геймплей, динамика — как устроен игровой процесс в играх // netology.ru. 2020. URL: https://netology.ru/blog/09-2020-igrovoy-process.
5. Aarseth E., Smedstad S.M., Sunnana L.A Multidimensional typology of games // In 2003 DiGRA International Conference: Level Up, November, 2003.
6. Elverdam C., Aarseth E. Game Classification and Game Design: Construction Through Critical Analysis // Games and Culture. 2007. Vol. 2, No. 1. P. 3–22. https://doi.org/10.1177/1555412006286892
7. Proulx J.N., Romero M., Arnab S. Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning // Simulation and Gaming. 2017. Vol. 48, Issue 1, P. 81–97. https://doi.org/10.1177/1046878116674399
8. Fabricatore C. Gameplay and game mechanics design: a key to quality in videogames // In OECD-CERI Expert Meeting on Videogames and Education, October, 2007. URL: http://dx.doi.org/10.13140/RG.2.1.1125.4167
9. Zubek R. Elements of Game Design. MIT Press. 2020. 240 p.
10. Gmodel. URL: https://gl.sberlabs.com/en/gmodel/index.
11. Bartle R.A. Designing virtual worlds. Berkeley. United States. New Riders. 2004. 937 p.
12. Parlett D. The Oxford History of Board Games, Oxford University Press, 1999. 386 p.
13. Игровые механики: Часть II // gdcuffs.com. 2018. URL: https://gdcuffs.com/game_mechanics_deconstruct_2/
14. Алексеев А.А., Катасёв А.С., Зуев Д.С., Тутубалина Е.В., Хасьянов А.Ф. Интеллектуальная информационная система поддержки принятия судебных решений в сфере экономического правосудия // Научный сервис в сети Интернет: труды XX Всероссийской научной конференции (17–22 сентября 2018 г., г. Новороссийск). М.: ИПМ им. М.В. Келдыша, 2018. С. 17–27. URL: http://keldysh.ru/abrau/2018/theses/60.pdf https://doi.org/10.20948/abrau-2018-60
15. Сахибгареева Г.Ф., Кугуракова В.В. Редактор интерактивной структуры для инструмента генерации сценарных прототипов // Электронные библиотеки. 2022. T. 24, №.6. С. 1184–1202. https://doi.org/10.26907/1562-5419-2021-24-6-1184-1202
16. Козар Б.А., Кугуракова В.В., Сахибгареева Г.Ф. Структуризация сущностей естественного текста с использованием нейронных сетей для генерации трехмерных сцен // Программные продукты и системы. 2022. №3. С. 329–339. http://doi.org/10.15827/0236-235X.139.329-339
17. Сахибгареева Г.Ф., Кугуракова В.В., Большаков Э.С. Инструменты балансирования игр // Электронные библиотеки. 2023. Т. 26, № 2. С. 225–251. https://doi.org/10.26907/1562-5419-2023-26-2-225–251
18. Prillaman M. Is ChatGPT making scientists hyper-productive? The highs and lows of using AI // Nature. 2024. Vol. 627.
https://doi.org/10.1038/d41586-024-00592-w
19. Wang R. et al. K-ADAPTER: Infusing Knowledge into Pre-Trained Models with Adapters // in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. https://doi.org/10.18653/v1/2021.findings-acl.121
20. Lewis P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks // in Advances in Neural Information Processing Systems, 2020, December. URL: https://arxiv.org/pdf/2005.11401.


Most read articles by the same author(s)

1 2 > >>