Temperature Distribution at the Border Astenosphere–Lithosphere (Mathematical Model)
Main Article Content
Abstract
The convection of matter in the Earth's upper mantle is considered, which in the Oberbeck–Boussinesq approximation is due to thermogravitational differentiation. Within the framework of this approximation, a 2-D numerical simulation of convective flows of the medium matter was performed. The equation for temperature follows from the entropy balance relation, where, due to taking into account the variable viscosity in the system, there is an effect of energy dissipation. The boundary conditions correspond to the assignment of the temperature generally accepted at the boundary of the upper and lower mantles, and for the lateral boundaries - their thermal insulation. At the asthenosphere–lithosphere boundary, assumptions were made that the heat dynamics is determined by its flow from the asthenosphere layer closest to the boundary, part of the heat dissipation along the boundary, and heat consumption for melting the lithosphere matter. Numerical solution of the constitutive equations is carried out in variables stream function - vorticity. An iterative scheme for their solution is given. The issues of software implementation of the numerical simulation apparatus are discussed. It is shown that under such boundary conditions, a quasi-periodic regime of heat oscillations is formed in the system under consideration.
Article Details
References
2. Джозеф Д. Устойчивость движения жидкости. М.: Мир, 1981. 638 с.
3. Добрецов Н.Л., Кирдяшкин А.Г. Глубинная геодинамика. Новосибирск: Изд-во СО РАН НИЦ ОИГГМ СО РАН, 1994. 299 с.
4. Занемонец В.Б., Котелкин В.Д., Мясников В.П. О динамике литосферных движений // Физика Земли. 1974. № 5. С. 43–54.
5. Кеонджян В.Н. Модель химико-плотностной дифференциации мантии Земли // Физика Земли. 1980. № 8. С. 3–15.
6. Кирдяшкин А.А., Кирдяшкин А.Г., Сурков А.В. Тепловая гравитационная конвекция в астеносфере под срединно-океаническим хребтом и устойчивость основных глубинных паргенезисов // Геология и геофизика. 2006. Т. 47. № 1. С. 76–94.
7. Коробицына Ж.Л., Овчарова А.С. Применение метода фиктивных областей для задач тепловой конвекции // Тр. Конф. RDAMM-2001. 2001. C. 372–382.
8. Коробицына Ж.Л., Тычков С.А. Численное моделирование процессов тепло- и массопереноса с учетом фазового перехода в геодинамике // ЖВМиМФ. 1997. Т. 37. № 6. С. 733–741.
9. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Физматлит. 2003. 736 с.
10. Лобковский Л.И., Никишин А.М., Хаин В.Е. Современные проблемы геотектоники и геодинамики. М.: Научный мир, 2004. 612 с.
11. Монин А.Н. История Земли. Л.: Наука, 1977. 228 с.
12. Монин А.С., Сорохтин О.Г. Об объемной гравитационной дифференциации Земли // ДАН СССР. 1981. Т. 259. № 5. С. 1076–1079.
13. Мэтьюз Дж., Финк К. Численные методы. Использование MATLAB. М.: Издательский дом «Вильямс», 2001. 720 с.
14. Оран Э., Борис Дж. Численное моделирование реагирующих потоков. М.: Мир, 1990. 660 с.
15. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 2002. 461 с.
16. Роуч П.Дж. Вычислительная гидродинамика. М.: Мир, 1980. 618 с.
17. Рычкова Е.В., Тычков С.А. Численная модель тепловой конвекции в верхней мантии Земли под литосферой континентов // Вычислительные технологии. 1997. Т. 2. № 5. С. 66–81.
18. Самарский А.А. Теория разностных схем. М.: Наука, 1983. 616 с.
19. Сорохтин О.Г., Ушаков С.А. Глобальная эволюция Земли. М.: Изд-во МГУ, 1991. 446 с.
20. Темам Р. Уравнения Навье–Стокса. Теория и численный анализ. М.: Мир, 1981. 408 с.
21. Трубицын В.П. Геодинамическая модель эволюции Тихого океана // Физика Земли. 2006, № 2. С. 3–25.
22. Трубицын В.П. Сейсмическая томография и дрейф континентов // Физика Земли. 2008. № 12. С. 83–91.
23. Трубицын В.П., Баранов А.А., Евсеев А.Н., Трубицын А.П., Харыбин Е.В. Влияние низковязкой астеносферы на мантийные течения // Физика Земли. 2006, № 12. С. 11–19
24. Трубицын В.П., Николайчик В.В. Режимы тепловой конвекции Земли // Физика Земли. 1991. № 6. С. 3–12.
25. Трубицын В.П., Белавина Ю.Ф., Рыков В.В. Тепловое и механическое взаимодействие мантии с континентальной литосферой // Физика Земли. 1993. № 11. С. 3–15.
26. Трубицын В.П., Харыбин Е.В. Геодинамическая модель дифференциации мантийного вещества в глубинах Земли // Изв. АН СССР. Физика Земли. 1988. № 4. С. 83–89.
27. Тычков С.А., Червов В.В., Черных Г.Г. Численная модель трехмерной конвекции в верхней мантии Земли // Физика Земли. 2005. № 5. С. 48–64.
28. Уайли П. Земная мантия // УФН. 1977. Т. 121. № 1. С. 139–156.
29. Флетчер К. Вычислительные методы в динамике жидкостей. М.: Мир. 1991. Т. 1. 504 с.
30. Cristensen U. Convection with pressure- and temperature-depend non Newtonian rheology // Geophys. J. Roy. Astr. Soc. 1984. Vol. 77. No. 2. P. 343–384.
31. Davis T.A. UMFPACK Version 4.6 User Guide (http://www.cise.ufl.edu/research/sparse/umfpack), Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL. 2002.
32. Gurnis M., Davies G.F. Numerical study of high Rayleigh number convection in a medium with depth-depend viscosity // Geophys. J. Roy. Astr. Soc. 1985. Vol. 186, No. 85. P. 523–541.
33. Houston M.H. Jr., De Bremaecker J.Cl. ADI solution of free convection in a variable viscosity fluid// J. of Comput. Physics. 1974. Vol. 16. P. 231–239.
34. Lowman J.P., Jarvis G. Mantle convection flow reversals due to continental collisions // Geophys. Res. Lett. 1993. Vol. 20. P. 2087–2090.
35. McKenzie D.P., Roberts J.M., Weiss N.O. Convection in Earth’s mantle: towards a numerical simulation // J. Fluid Mech. 1974. Vol. 62. Part 3. P. 465–538.
36. Schubert G., Anderson C.A. Finite element calculation of very high Rayleigh number thermal convection // Geophys. J. Roy. Astr. Soc. 1985. Vol. 80. P. 298–318.
37. Spohn T., Schubert G. Convective thinning of the lithosphere: a mechanism for rifting and mid-plate volcanism on Earth, Venus and Mars // Tectonophysics. 1983. Vol. 94. P. 67-90.
38. Torrance K.E., Turcotte D.L. Thermal convection with large viscosity variations // J. Fluid Mech. 1971. Vol. 47. P. 113–125.
39. Turcotte D., Emerman S. Mechanism of active and passive rifting // Tectonophysics. 1983. Vol. 94. P. 39–50.
40. Zhong S., Gurnis M., Moresi L. Free-surface formulation of mantle convection–I. Basic theory and application to plume // Geophys. J. Int. 1996. Vol. 127. P. 708–718.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.