On the Synonym Search Model

Main Article Content

Olga Muratovna Ataeva
Vladimir Alekseevich Serebriakov
Natalia Pavlovna Tuchkova

Abstract

The problem of finding the most relevant documents as a result of an extended and refined query is considered. For this, a search model and a text preprocessing mechanism are proposed, as well as the joint use of a search engine and a neural network model built on the basis of an index using word2vec algorithms to generate an extended query with synonyms and refine search results based on a selection of similar documents in a digital semantic library. The paper investigates the construction of a vector representation of documents based on paragraphs in relation to the data array of the digital semantic library LibMeta. Each piece of text is labeled. Both the whole document and its separate parts can be marked. The problem of enriching user queries with synonyms was solved, then when building a search model together with word2vec algorithms, an approach of "indexing first, then training" was used to cover more information and give more accurate search results. The model was trained on the basis of the library's mathematical content. Examples of training, extended query and search quality assessment using training and synonyms are given.

Article Details

References

1. Baeza-Yates R., Ribeiro-Neto B. Modern Information Retrieval. ACM Press, New York, 1999. 518 p.
2. Salton G. Introduction to Modern Information Retrieval. McGraw-Hill, 1983, 513 p.
3. Blei D.M., Ng A.Y., Jordan M.I. Latent Dirichlet Allocation // Journal of Machine Learning Research. 2003. V. 3. P. 993–1022.
4. Furnas G.W., Landauer T.K., Gomez L.M., Dumais S.T. The vocabulary problem in human-system communication // Commun. ACM. 1987. V. 30 No. 11 P. 964–971.
5. Biswas G., Bezdek J., Oakman R.L. A knowledge-based approach to online document retrieval system design. In Proc. ACM SIGART Int. Symp. Methodol. Intell. Syst. 1986. P. 112 120.
6. Мак-Каллок У.С., Питтс В. Логическое исчисление идей, относящихся к нервной активности // Автоматы. Под ред. К. Э. Шеннона и Дж. Маккарти. М.: Изд-во иностр. лит., 1956. С. 363–384 (Перевод английской статьи 1943 г.).
7. Профессиональный информационно-аналитический ресурс, посвященный машинному обучению, распознаванию образов и интеллектуальному анализу данных. URL: http://www.machinelearning.ru/ (доступно 26.10.2021)
8. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб.: Питер, 2000. 384 с.
9. Атаева О.М., Серебряков В.А. Онтология цифровой семантической библиотеки LibMeta // Информатика и её применения. 2018. Т. 12. № 1. С. 2–10.
10. Mikolov T., Chen K., Corrado G., Dean J. Efficient Estimation of Word Representations in Vector Space // Proceedings of Workshop at ICLR, 2013.
11. Mikolov T., Yih W.T., Zweig C. Linguistic Regularities in Continuous Space Word Representations // Proceedings of NAACL HLT, 2013.
12. Le Q., Mikolov T. Distributed Representations of Sentences and Document // International Conference on Machine Learning. 2014. P. 1188–1196.
13. Ataeva O.M., Sererbryakov V.A., Tuchkova N.P. Using Applied Ontology to Saturate Semantic Relations // Lobachevskii Journal of Mathematics. 2021. V. 42. No. 8. P. 1776–1785.
14. Voorhees E.M. Query expansion using lexical-semantic relations. 17th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Dublin, Ireland, 1994.
15. Buckley C., Salton G., Allan J., Singhal A. Automatic query expansion using SMART: TREC 3, presented at the 3rd Text Retr. Conf. (TREC), 1995.
16. Efthimiadis E.N. Query expansion // Annu. Rev. Inf. Sci. Technol. 1996. V. 31. No. 5. P. 121–187.


Most read articles by the same author(s)

1 2 > >>