Seasonal and Decadal Variability of Atmosphere Pressure in Arctic, its Statistical and Temporal Analysis

Main Article Content

Abstract

The paper analyzes the statistical and temporal seasonal and decadal variability of the atmospheric pressure field in the Arctic region of Russia. Schemes for the frequency analysis of probability transitions for characteristics of stochastic-diffusion processes were used as the main research method. On the basis of the given series of 60 years long from 1948 to 2008, such parameters of diffusion processes as the mean (drift process) and variance (diffusion process) were calculated and their maps and time curves were constructed. The seasonal and long-term variability of calculated fields was studied as well as their dependencies on a discretization of the frequency intervals. These characteristics were analyzed and their geophysical interpretation was carried out. In particular, the known cycles of solar activity in 11 and 22 years were revealed. Numerical calculations were performed on the Lomonosov-2 supercomputer of the Lomonosov Moscow State University.

Article Details

References

1. Kendall M., Stuart A., Ord J.K. The Advanced Theory of Statistics. Vol. 3: Design and Analysis, and Time-Series. Fourth edition Hardcover. March 13, 1983.
2. Murphy J. Technical analysis of the futures markets. A Comprehensive Guide to Trading Methods and Applications. New York Institute of Finance, 1986. 556 p.
3. Привальский В.Е. Статистическая предсказуемость средней годовой температуры воздуха северного полушария // Докл. АН СССР. 1981. Т. 257. № 6. С. 1342–1345.
4. Беляев К.П., Музыченко A.C., Селеменов K.M. Статистические характеристики формирования аномалий поверхностной температуры воды // Сб. Статистические закономерности климатической изменчивости океанов, ред. Лаппо С.С. Л: Гидрометиздат, 1988. С. 65–72.
5. Balasmeh O., Babbar R., Karmaker T. Trend analysis and ARIMA modeling for forecasting precipitation pattern in Wadi Shueib catchment area in Jordan // Arabian Journal of Geosciences. 2019. V. 12, 27. https://doi.org/10.1007/s12517-018-4205-z
6. Гихман И., Скороход А. Введение в теорию случайных процессов. М.: Наука, 1965. 655 с.
7. Назаров А., Терпунов А. Теория вероятностей и случайных процессов. Изд-во Томского госуниверситета, 2010. 204 с.
8. Risken H. The Fokker–Planck Equation: Methods of Solutions and Applications. Springer. 1984. 452 p.
9. Беляев К., Кулешов А., Танажура К., Тучкова Н. Метод коррекции расчетов динамической модели данными наблюдений и его применение к анализу динамики Атлантического океана // Матем. моделирование. 2015. Т. 27. № 2. С. 20–32.
10. Tanajura C.A.S., Belyaev K. On the oceanic impact of a data-assimilation method in a coupled ocean-land-atmosphere model // Ocean Dynamics. 2002. Vol. 52. № 3. P. 123–132.
11. Попов С.К. Влияние морского льда на приливные колебания уровня моря и скорости течений в Баренцевом и Белом морях // Труды Гидрометцентра РФ, Гидрометеорологические исследования и прогнозы. 2018. № 4 (370). С. 137–155.
12. Девятова Е.В., Мордвинов В.И. Квазидвухлетнее колебание ветра в низкоширотной стратосфере и волновая активность атмосферы зимой в северном полушарии // Изв. РАН, ФАО. 2011. Т. 47. № 5. С. 608–621.


Most read articles by the same author(s)