Npc Behavior Plugin Development for Game Engine Unity

Main Article Content

Leonid Nikolaevich Parenyuk
Vlada Vladimirovna Kugurakova

Abstract

There are various approaches for creating artificial intelligence in games, and each has both advantages and disadvantages. This study describes an authoring implementation of the NPC behavior task using machine learning algorithms that will be associated with the Unity environment in real time. This approach can be used in game development.

Article Details

Author Biographies

Leonid Nikolaevich Parenyuk

Higher School of Information Technologies and Intelligent Systems of Kazan Federal University. His research interests include game development.

Vlada Vladimirovna Kugurakova

Docent of Higher School of Information Technology and Intelligent Systems, Head of Laboratory «Virtual and simulation technologies in biomedicine». Research interests include realism of simulation, immersion VR.

References

Бакиров А.Р., Костюк Д.И., Лазарев Е.Н., Хафизова А.Р. Опыт создания неигровых персонажей в виртуальных мирах // Электронные библиотеки. 2016. T. 19. № 6. C. 502–520.

Juliani A., Berges V., Vckay E., Gao Y., Henry H., Mattar M., Lange D. Unity: A General Platform for Intelligent Agents / Open-source library // 2018. URL: https://github.com/Unity-Technologies/ml-agents

Juliani A. Introducing: Unity Machine Learning Agents Toolkit // 2017. URL: https://blogs.unity3d.com/2017/09/19/introducing-unity-machine- learning-agents/

Tang W., Lai J. Enhancing Agent Intelligence with Behavior Duplication // Advanced Materials Research. 2012. Vols. 403–408. P. 1266–1269.

Hugunin J. IronPython / Open-source library // 1st ver. 2006: last ver. 2018. URL: https://ironpython.net

Scikit-learn / Open source library // 1st ver. 2007: last ver. 2020. URL: https://scikit-learn.org

Pedregosa F. et al. Scikit-learn: Machine Learning in Python // Journal of Machine Learning Research (JMLR 12). 2011. P. 2825–2830.

Li Y., Xu D.-W. A Game AI based on ID3 Algorithm // Conference: 2016 2nd International Conference on Contemporary Computing and Informatics. 2016. P. 681–687.

De Freitas J.M., De Souza F.R., Bernardino H.S. Evolving Controllers for Mario AI Using Grammar-based Genetic Programming // IEEE Congress on Evolutionary Computation (CEC). 2018. P. 1–8.

ITIS-DML-M2020-ParenyukLN. (2020) Python Unity Research [демонстрационная видеозапись] // YouTube. 9 марта 2020. – (https://www.youtube.com/watch?v=4AqrpTxCXYk).

Плагин поведения NPC для игрового движка UNITY / Project repository // 2020. – URL: https://github.com/parenyukln/pyton-unity-research

C.-U. Lim, R. Baumgarten, S. Colton, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A.I. Esparcia-Alcazar, C.-K. Goh, J.J. Merelo, F. Neri, M. Preuß, J. Togelius, G.N. Yannakakis. Evolving behaviour trees for the commercial game defcon // Applications of Evolutionary Computation, Berlin, Heidelberg: Springer Berlin Heidelberg. 2010. P. 100–110.

D Roguelike tutorial // Unity Technologies. 2015. URL: https://learn.unity.com/project/2d-roguelike-tutorial



Most read articles by the same author(s)

1 2 > >>