Methods and Algorithms for Increasing Linked Data Expressiveness (Overview)

Main Article Content

Abstract

This review discusses methods and algorithms for increasing linked data expressiveness which are prepared for Web publication. The main approaches to the enrichment of ontologies are considered, the methods on which they are based and the tools for implementing the corresponding methods are described.The main stage in the general scheme of the related data life cycle in a cloud of Linked Open Data is the stage of building a set of related RDF- triples. To improve the classification of data and the analysis of their quality, various methods are used to increase the expressiveness of related data. The main ideas of these methods are concerned with the enrichment of existing ontologies (an expansion of the basic scheme of knowledge) by adding or improving terminological axioms. Enrichment methods are based on methods used in various fields, such as knowledge representation, machine learning, statistics, natural language processing, analysis of formal concepts, and game theory.

Article Details

Author Biography

Olga Avenirovna Nevzorova

Kazan Federal University, Institute of Computer Mathematics and Information Technologies, Associated Professor the Department of Information Systems, PhD. Major Fields of Scientific Research: Natural language processing, Artificial intelligence.

References

Auer S., Lehmann J., Ngonga-Ngomo A.-C. Introduction to Linked Data and Its Lifecycle on the Web // Reasoning Web 2011. Lecture Notes in Computer Science. 2011. V. 6848. Springer, Heidelberg. P. 1–75.

Nienhuys-Cheng S.-H., de Wolf R. Foundations of Inductive Logic Programming // Lecture Notes in Computer Science. V. 1228. Springer, Heidelberg, 1997. 248 p.

Cohen W.W., Borgida A., Hirsh H. // Computing Least Common Subsumers in Expressive Description Logics. In: Foo N. (eds). Advanced Topics in Artificial Intelligence. AI 1999. Lecture Notes in Computer Science. Vol. 1747. Springer, Berlin, Heidelberg. P. 754–760.

Cohen W.W., Hirsh H. Learning the CLASSIC description logic: Theoretical and experimental results // Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning (KR-94). San Francisco: Morgan Kaufmann, 1994. P. 121–133.

Badea L., Nienhuys-Cheng S.-H. A refinement operator for description logics // In: Cussens J., Frisch A.M. (eds). Inductive Logic Programming: 10th International Conference, ILP 2000. Lecture Notes in Computer Science (LNAI). 2000. Vol. 1866. Springer, Heidelberg. P. 40–59.

Esposito F., Fanizzi N., Iannone L. Knowledge-intensive induction of terminologies from metadata // Proceedings of The Third International Semantic Web Conference Proceedings, ISWC 2004. Lecture Notes in Computer Science. 2004. V. 3298. Springer-Verlag, Heidelberg. P. 411–426.

Lehmann J., Hitzler P. Foundations of Refinement Operators for Description Logics // In: Blockeel H., Ramon J., Shavlik J., Tadepalli P. (eds). Inductive Logic Programming: 17th International Conference, ILP 2007. Lecture Notes in Computer Science (LNAI). 2008. Vol. 4894. Springer, Heidelberg. P. 161–174.

Fanizzi N., d’Amato C., Esposito F. DL-FOIL Concept Learning in Description Logics // Inductive Logic Programming: 18th International Conference, ILP 2008. Lecture Notes in Computer Science. 2008. V. 5194. Springer, Heidelberg. P. 107–121.

Baader F., Sertkaya B., Turhan A.Y. Computing the Least Common Subsumer w.r.t. a Background Terminology. In: Alferes J.J., Leite J. (eds). Logics in Artificial Intelligence. JELIA 2004. Lecture Notes in Computer Science. 2004. Vol. 3229. Springer, Berlin, Heidelberg. P. 400–412.

Quinlan J.R. Learning Logical Definitions from Relations // Machine Learning. 1990. V. 5. P. 239–266.

Iannone L., Palmisano I., Fanizzi N. An algorithm based on counterfactuals for concept learning in the Semantic Web // Applied Intelligence. 2007. Vol. 26. P. 139–159.

Lehmann J., Hitzler P. A refinement operator based learning algorithm for the ALC description logic // In: Blockeel H., Ramon J., Shavlik J., Tadepalli P. (eds). Inductive Logic Programming: 17th International Conference, ILP 2007. Lecture Notes in Computer Science (LNAI). 2008. Vol. 4894. Springer, Heidelberg. P. 147–160.

Lehmann J., Bühmann L. ORE – A Tool for Repairing and Enriching Knowledge Bases // In: Patel-Schneider P.F. et al. (eds) The Semantic Web – ISWC 2010. ISWC 2010. Lecture Notes in Computer Science. 2010. Vol. 6497. Springer, Berlin, Heidelberg. P. 177–193.

Lehmann J., Auer S., Bühmann L. Class expression learning for ontology engineering // Journal of Web Semantics. 2011. Vol. 9. P. 71–81.

Lisi F.A. Building rules on top of ontologies for the semantic web with inductive logic programming // Theory and Practice of Logic Programming. 2008. Vol. 8(3). P. 271–300.

Blomqvist E. Semi-automatic Ontology Construction based on Patterns. Ph.D. thesis. Linkoping University. 2009.

Volker J., Vrandecic D., Sure Y. Learning Disjointness // In: Franconi E., Kifer M., May W. (eds). 4th European Semantic Web Conference, ESWC 2007. Lecture Notes in Computer Science (LNAI). 2007. Vol. 4894. Springer, Heidelberg. P. 175–189.

Rudolph S. Exploring relational structures via FLE // In: Wolff K.E., Pfeiffer H.D., Delugach H.S. (eds) // 12th International Conference on Conceptual Structures, ICCS 2004. Lecture Notes in Computer Science (LNAI). 2004. Vol. 3127. Springer, Heidelberg. P. 196–212.

Sertkaya B. OntocomP system description // In: Grau B.C., Horrocks I., Motik B., Sattler U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30. CEUR Workshop Proceedings. Vol. 477. CEUR-WS.org (2009).

Völker J., Rudolph S. Fostering Web Intelligence by Semi-automatic OWL Ontology Refinement // IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, NSW. 2008. P. 454–460. doi: 10.1109/WIIAT.2008.36.

RELExO (Relational Exploration for Learning Expressive Ontologies). URL: http://code.google.com/p/relexo/.

Choi N., Song I.-Y., Han H. A survey on ontology mapping // SIGMOD Record. 2006. Vol. 35(3). P. 34–41.

Doan A., Domingos P., Halevy A. Learning to Match the Schemas of Data Sources: A Multistrategy Approach // Machine Learning. 2003. Vol. 50 (3). P. 279–301.

Beneventano D., Bergamaschi S., Guerra F. Synthesizing an Integrated Ontology // IEEE Internet Computing. 2003. Vol. 7(5). P.42–51.

Calvanese D., De Giacomo G., Lenzerini M. A Framework for Ontology Integration // Proceedings of the 1st International Semantic Web Working Symposium (SWWS). 2001. P. 303–317.

Silva N., Rocha J. Ontology Mapping for Interoperability in Semantic Web // Proceedings of the IADIS International Conference WWW/Internet 2003, ICWI 2003. 2003. P. 603–610.

Bouquet P., Giunchiglia F., van Harmelen F. C-OWL: Contextualizing Ontologies // The Semantic Web – ISWC 2003, Second International Semantic Web Conference, 2003. Lecture Notes in Computer Science. 2003. Vol. 2870. P. 164–179.

Bouquet P., Serafini L., Zanobini S. Semantic Coordination: A New Approach and an Application // The Semantic Web - ISWC 2003, Second International Semantic Web Conference, 2003. Lecture Notes in Computer Science. 2003. Vol. 2870. P.130–145.

Doan A., Madhavan J., Dhamankar R. et al. Learning to match ontologies on the Semantic Web // VLDB. 2003. Vol. 12. P. 303–319. https://doi.org/ 10.1007/s00778-003-0104-2.

Silva N., Rocha J. Semantic Web complex ontology mapping // Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).2003. P. 82-88. doi: 10.1109/WI.2003.1241177.

Li J. LOM: A Lexicon-based Ontology Mapping Tool // Proceedings of the Performance Metrics for Intelligent Systems. 2004. https://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.141.5379&rep=rep1&type=pdf

Ehrig M., Staab S. QOM – Quick OntologyMapping // Proceedings of The Third International Semantic Web Conference Proceedings, ISWC 2004. Lecture Notes in Computer Science. 2004. Vol. 3298. P. 683–697.

Mitra P., Wiederhold G. Resolving Terminological Heterogeneity in Ontologies // Proceedings of the ECAI’02 workshop on Ontologies and Semantic Interoperability. 2002. P. 45–50.

Maedche A., Motik B., Stojanovic L., Studer R., Volz R. Ontologies for Enterprise Knowledge Management // IEEE Intelligent Systems. 2003. Vol. 18(2). P. 26–33.

Mitra P., Noy N. F., Jaiswals A. OMEN: A Probabilistic Ontology Mapping Tool // Proceedings of International Semantic Web Conference, ISWC- 2005. 2005. P. 537–547.

Besana P., Robertson D., Rovatsos M. Exploiting interaction contexts in P2P ontology mapping // Proceedings of 2nd International Workshop on Peer to Peer Knowledge Management. 2005. CEUR Workshop Proceedings. P. 1613–1673. CEUR-WS.org/Vol-139/2.pdf.

Noy N.F., Musen M.A. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment // Proceedings of the National Conference on Artificial Intelligence (AAAI/IAAI). 2000. P.450–455.

Noy N.F., Musen M.A. Smart: Automated Support for Oontology Merging and Alignment // Proceedings of the 12th Workshop on Knowledge, Acquistion Modeling and Management (IKAW 1999). 1999. P. 1–20.

Chalupsky H. Ontomorph: A Translation System for Symbolic Knowledge // Proceedings of the 7th international Conference on Principles of Knowledge Representation and Reasoning. 2000. P. 471–482.

Ichise R., Takeda H., Honiden S. Rule Induction for Concept Hierarchy Alignment // Proceedings of the Workshop on Ontology Learning at the 17th International Joint Conference on Artificial Intelligence (IJCAI). 2001. http://ceur-ws.org/Vol-38/ichise_IJICAI-OL.pdf.

Noy N.F., Musen M.A. Anchor-PROMPT: Using Non-Local Context for Semantic Matching // Proceedings of the Workshop on Ontologies and Information Sharing at the International Joint Conference on Artificial Intelligence (IJCAI). 2001. http://dit.unitn.it/~accord/RelatedWork/Matching/noy.pdf.

Kalfoglou Y., Hu B. CROSI Mapping System (CMS) Results of the 2005 Ontology Alignment Contest // Proceedings of the K-CAP 2005 Workshop of Integrating Ontologies. 2005. P. 77–85.

Stumme G., Maedche A. FCA-Merge: Bottom-Up Merging of Ontologies // Proceeding of the International Joint Conference on Artificial Intelligence IJCAI-01. Seattle: 2001. P. 205–234.

Ganter B., Wille R. Formal Concept Analysis. Mathematical Foundations. Berlin: Springer, 1999. 284 p.

Titanic: Machine Learning Algorithms. URL: https://www.kaggle.com/ berhag/titanic-machine-learning-algorithms.

McGuinness D., Fikes R., Rice J., Wilder S. The Chimaera Ontology Environment // Proceedings of the 17th National Conference on Artificial Intelligence (AAAI). 2000. P. 1123–1124.