Synchronization of player and virtual avatar movements

Main Article Content

Павел Дмитриевич Гришков
Влада Владимировна Кугуракова

Abstract

The paper presents mathematical approaches for implementing methods for synchronizing human actions and virtual avatar movements, using inverse kinematics. To create a complete system for synchronizing the player's behavior and VR-avatar, the implementation of the necessary functionality is described: hand positioning, calibration of their size, bending of hands into anatomically acceptable sides, anatomical flexion of the spine, squatting and moving in space. The implementation of tilt and squat significantly extends the functionality of synchronization of the player's behavior and avatar, which allows creating a complete set of visual sensations of the user in a virtual environment, which is deprived of most of the applications of virtual reality at the moment.

Article Details

Author Biographies

Павел Дмитриевич Гришков

Bachelor of Higher School ITIS. Sphere of interests: Unreal Engine development.

Влада Владимировна Кугуракова

Senior Lecturer of Higher School of Information Technology and Intelligent Systems, Head of Laboratory «SIM». Sphere of interests: game development, immersivity of virtual environment, narrative identity. 

References

1. Abramov V.D., Kugurakova V.V., Rizvanov A.A., Abramskiy M.M., Manakhov N., Evstafiev M.E., Ivanov D.S. Virtual biotechnological labs development // BioNanoScience. 2017. Vol. 7. Iss. 2. P. 363–365.
2. Kugurakova, V., Khafizov M., Akhmetsharipov R. Virtual surgery system with realistic visual effects and haptic interaction // Proc. of The International Conference On Artificial Life And Robotics. 2017. P. P86–P89.
3. Shigapov M., Kugurakov, V., Zykov E. Design of digital gloves with feedback for VR // Proc. of IEE EWDTS. 2018.
4. Won A.S., Bailenson J., Lee J., Lanier J. Homuncular Flexibility in Virtual Reality // Journal of Computer-Mediated Communication. 2015. Vol. 20. No. 3. P. 241–259.
5. Slater M., Wilbur S. A framework for immersive virtual environments (five): Speculations on the role of presence in virtual environments // Presence: Teleoperators and virtual environments. 1997. Vol. 6. No. 6. P. 603–616.
6. Martin Usoh M.S., Steed, A. Taking Steps: The Influence of a Walking Technique on Presence in Virtual Reality // ACM Transactions on Computer-Human Interaction. 1995. Vol. 2. No. 3. P. 201–219.
7. Lin Q., Rieser J.J., Bodenheimer B. Stepping off a ledge in an HMD-based immersive virtual environment // Proc. of ACM Symposium on Applied Perception. 2013. P. 107.
8. Dodds T.J., Mohler B.J. & Bülthoff H.H. Talk to the virtual hands: Self-animated avatars improve communication in head-mounted display virtual environments // PLoS ONE. 2011. Vol. 6. No. 10.
9. Kugurakova V., Talanov M., Manakhov N. Anthropomorphic artificial social agent with simulated emotions and its implementation // 6th Annual Int. Conference on Biologically Inspired Cognitive Architecture. 2015. Vol.71. P. 112–118.
10. CyberGlove Systems. URL: http://www.cyberglovesystems.com/
11. Wheatland N., Wan Y., Song H., Neff M., Zordan V. & Jörg S. State of the Art in Hand and Finger Modeling and Animation // Computer Graphics Forum. 2015. Vol. 34. No. 2. P. 735–760.
12. Microsoft Kinect. URL: https://www.xbox.com/ru-RU/xbox-one/accessories/kinect
13. Proteus VR. URL: https://www.proteus-vr.com
14. IKinema. URL: https://www.ikinema.com
15. Unreal Engine. URL: http://unrealengine.com
16. Copenhaver J. VR Animation and Locomotion Systems in Lone Echo. URL: https://readyatdawn.sharefile.com/share/view/s80d4725de7045259
17. Steed A., Pan Y., Zisch F. & Steptoe W. The impact of a self-avatar on cognitive load in immersive virtual reality // Proc. of IEEE Virtual Reality. 2016. P. 67.


Most read articles by the same author(s)

1 2 3 4 > >>