• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Типы эмбеддингов и их применение в интеллектуальной академической генеалогии

Андреас Хачатурович Мариносян
240-261
Аннотация:

Рассмотрена проблема построения интерпретируемых векторных представлений научных текстов для задач интеллектуальной академической генеалогии. Предложена типология эмбеддингов, включающая три класса: статистические, выученные нейросетевые и структурированные символьные. Обоснована необходимость объединения достоинств нейросетевых (высокая семантическая точность) и символьных (интерпретируемость измерений) подходов. Для реализации такого гибридного подхода предложен алгоритм построения выученных символьных эмбеддингов путем регрессионного преобразования вектора внутреннего представления нейросетевой модели в интерпретируемый набор оценок.


Экспериментальная оценка алгоритма проведена на корпусе фрагментов авторефератов диссертаций по педагогическим наукам. Компактный трансформерный энкодер с регрессионной головой обучался воспроизводить тематические оценки, сгенерированные передовой генеративной языковой моделью. Сравнение шести режимов обучения (три типа регрессионной головы и два состояния энкодера) показало, что дообучение верхних слоев энкодера является ключевым фактором повышения качества. По результатам тестирования была выбрана наилучшая конфигурация, которая достигла коэффициента детерминации R² = 0.57 и точности определения трех наиболее релевантных концептов, равной 74%. Результаты подтверждают, что для определенного рода задач, в которых требуется формальное представление выходных данных, возможна аппроксимация поведения генеративной модели компактным энкодером с регрессионной головой при существенно меньших вычислительных затратах. В более широкой перспективе разработка алгоритмов построения выученных символьных эмбеддингов будет способствовать созданию такой модели формальной репрезентации научного знания, в которой конвергенция нейросетевых и символьных методов обеспечит как масштабируемость обработки научных текстов, так и интерпретируемость векторных представлений, кодирующих содержание.

Ключевые слова: эмбеддинги, академическая генеалогия, трансформерный энкодер, регрессионная голова, символьные эмбеддинги, тематический профиль, обработка естественного языка, интерпретируемость, большие языковые модели, наукометрия.

Метод предварительной оценки ответов обучающихся на основе векторной модели документов

Чулпан Бакиевна Миннегалиева, Гульшат Альфисовна Сабитова, Алмаз Маратович Гаялиев
324-339
Аннотация:

Рассмотрено применение векторных моделей для предварительного анализа ответов студентов, сформулированных в свободной форме. Векторные представления слов и документов получены при помощи моделей word2vec, doc2vec, BERT. Сходство ответа, данного обучающимся, и корректного ответа определялось с использованием косинусной меры. Выявлено, что векторные модели позволяют определить явно неверные ответы с достаточной точностью. Для ответов, которые близки по формулировке, предлагается провести дополнительный этап проверки. При помощи word2vec выполнена двоичная классификация ответов на определенные вопросы, приведены оценки точности, полноты, F1-меры.

Ключевые слова: векторная модель, word2vec, doc2vec, BERT, косинусное сходство, векторное представление.

Семантическое сходство в задаче аспектно-эмоционального анализа

Евгений Вячеславович Котельников, Павел Дмитриевич Блинов
120-137
Аннотация:

Исследуется проблема аспектно-эмоционального анализа текста. По сравнению с общим анализом тональности такой вариант является более сложным по причине наличия ряда сопутствующих подзадач, таких, как выделение аспектных терминов, определение тональности по отношению к этим терминам и аспектным категориям. Однако решение данной проблемы значительно расширяет возможности систем автоматического анализа неструктурированного текста.

Приведен обзор предыдущих работ в области аспектно-эмоционального анализа, описаны обучающие и тестовые данные семинара SentiRuEval. Для задачи извлечения аспектных терминов использовано векторное пространство распределенных представлений слов. Тональность аспектных терминов определяется на основе функций совместной информации и семантического сходства. Приведены сравнительные результаты на тестовых данных и заключительные выводы.

Ключевые слова: аспектно-эмоциональный анализ текста, взаимная информация, распределённые представления слов, машинное обучение, SentiRuEval.

Атрибуция архивных рукописных писем с использованием сиамских нейронных сетей

Наталия Михайловна Пронина
1454-1480
Аннотация:

Предложен метод автоматической атрибуции архивных рукописных писем на основе сиамской нейронной сети, решающий ключевую проблему цифровой гуманитаристики – установление авторства исторических документов. Актуальность исследования обусловлена массовой оцифровкой архивов XVII–XIX вв., атрибуция которых затруднена из-за неполных исходных сведений об авторах.


Метод адаптирован к работе с реальным корпусом текстов и учитывает характерные для архивов проблемы: некачественные оцифровки, значительную вариативность почерка и выраженный дисбаланс классов (от 1 до 50 и более образцов на автора). Применение сиамской архитектуры позволяет получать дискриминативные векторные представления, эмбеддинги, на основе которых выполняется не только классификация документов известных авторов, но и эффективно выявляются рукописи, не принадлежащие ни одному из них. Это сужает круг кандидатов для последующей экспертной проверки.


Представлен алгоритм предобработки данных и проведено сравнительное исследование двух подходов к анализу текста: на уровне фрагментов изображения (300 × 300 пикселей) и уровне отдельных строк. Разработанный инструмент предлагает архивным работникам и филологам эффективное решение для предварительной сортировки и атрибуции крупных массивов рукописных документов.

Ключевые слова: сиамская нейронная сеть, идентификация, верификация, атрибуция, рукописный текст, архивные документы, сверточная нейронная сеть, рекуррентная нейронная сеть.

Поиск слов в рукописном тексте на основе штриховой сегментации

Иван Дмитриевич Морозов, Леонид Моисеевич Местецкий
1435-1453
Аннотация:

Рукописные архивные документы составляют фундаментальную часть культурного наследия человечества, однако их анализ остается трудоемкой задачей для профессиональных исследователей-историков, филологов и лингвистов. В отличие от коммерческих приложений систем OCR (Optical Character Recognition, оптического распознавания символов), работа с историческими рукописями требует принципиально иного подхода из-за чрезвычайного многообразия почерков, наличия правок и деградации материалов.


Предложен метод поиска в рукописных текстах, основанный на штриховой сегментации. Вместо полного распознавания текста, часто недостижимого для исторических документов, метод позволяет эффективно отвечать на поисковые запросы исследователей. Ключевая идея заключается в декомпозиции текста на элементарные штрихи, формировании семантических векторных представлений с помощью контрастного обучения, последующей кластеризации и классификации для создания адаптивного словаря почерка.


Экспериментально показано, что поиск сравнением кортежей редуцированных последовательностей наиболее информативных штрихов по расстоянию Левенштейна обеспечивает достаточное качество для рассматриваемой задачи. Метод демонстрирует устойчивость к индивидуальным особенностям почерка и вариациям написания, что особенно важно для работы с авторскими архивами и историческими документами.


Предложенный подход открывает новые возможности для ускорения научных исследований в гуманитарной сфере, позволяя сократить время поиска нужной информации с недель до минут, что качественно меняет возможности исследовательской работы с большими архивами рукописных документов.

Ключевые слова: рукописный текст, поиск, штриховый анализ, сегментация, векторное представление, контрастное обучение, кластеризация.

Формирование структурированных представлений научных журналов для интеграции в граф знаний и семантического поиска

Ольга Муратовна Атаева, Михаил Геннадьевич Кобук
1306-1323
Аннотация:

Работа посвящена проблеме развития библиотеки научных предметных областей SciLibRu, как продолжения семантического описания научных трудов проекта LibMeta. В основе этой библиотеки лежит концептуальная модель данных, структура и семантика которой сформированы на принципах онтологического моделирования. Такой подход обеспечивает строгое описание предметной области, формализацию взаимосвязей между сущностями и возможность дальнейшего автоматизированного анализа данных. Целью настоящего исследования были разработка и экспериментальное применение методов структуризации содержимого научных журналов в формате LaTeX для их интеграции в онтологию библиотеки и обеспечения семантического поиска.


Предложен алгоритм трансляции в формат XML данных, представленных множеством файлов, для интеграции в онтологию библиотеки. Реализован модуль векторного поиска, основанный на вычислении эмбеддингов с использованием языковых моделей. Выявлены закономерности распределения эмбеддингов и факторы, влияющие на точность ранжирования результатов поиска. Проведено тестирование двух названых компонентов.


Разработанный метод составляет основу для автоматического включения содержимого научных журналов в граф знаний SciLibRu и создания обучающих корпусов для языковых моделей, ограниченных рамками научных предметных областей. Полученные результаты способствуют развитию систем навигации по графу знаний журналов, а также рекомендательных механизмов и инструментов интеллектуального поиска по русскоязычным научным текстам.

Ключевые слова: полуструктурированные данные, онтология текста, LaTeX, векторное представление текста, полнотекстовый поиск, семантический поиск.

О модели поиска синонимов

Ольга Муратовна Атаева, Владимир Алексеевич Серебряков, Наталия Павловна Тучкова
1006-1022
Аннотация:

Рассмотрена задача нахождения наиболее релевантных документов в результате расширенного и уточненного запроса. Для ее решения предложены модель поиска и механизм предварительной обработки текста, а также совместное использование поисковой системы и модели, построенной на основе индекса с помощью алгоритмов word2vec для генерации расширенного запроса с синонимами и уточнения результатов поиска на основе подбора похожих документов в цифровой семантической библиотеке. В работе исследуется построение векторного представления документов применительно к массиву данных цифровой семантической библиотеки LibMeta. Решалась задача обогащения пользовательских запросов синонимами. При построении модели поиска совместно с алгоритмами word2vec использован подход «сначала индексация, затем обучение», что позволяет получить более точные результаты поиска. Обучение модели проводилось на базе контента библиотеки для предметной области «Математика». Приведены примеры расширенного запроса с использованием синонимов.

Ключевые слова: модель поиска, алгоритм word2vec, синонимы, информационный запрос, расширение запроса.

Сокрытие в смысле: семантическое кодирование для генеративно-текстовой стеганографии

Олег Юрьевич Рогов, Дмитрий Евгеньевич Инденбом, Дмитрий Сергеевич Корж, Дарья Валерьевна Пугачёва, Всеволод Александрович Воронов, Елена Викторовна Тутубалина
1165-1185
Аннотация:

В статье предложена новая система для генерации стеганографического текста, скрывающая двоичные сообщения в семантически связном естественном языке с помощью скрытого пространства, обусловливающего большие языковые модели (LLM). Секретные сообщения сначала кодируются в непрерывные векторы с помощью обученного отображения двоичного кода в скрытое пространство, которое используется для управления генерацией текста посредством донастройки префикса. В отличие от предыдущих методов стеганографии на уровне токенов или синтаксиса, наш метод позволяет избежать явной манипуляции словами и вместо этого работает полностью в скрытом семантическом пространстве, что обеспечивает более плавные и менее заметные результаты. На стороне получателя скрытое представление восстанавливается из сгенерированного текста и декодируется обратно в исходное сообщение.
В качестве ключевого теоретического вклада мы предоставляем гарантию надежности: если восстановленный скрытый вектор находится в пределах ограниченного расстояния от изначального, обеспечивается точное восстановление сообщения, причем граница определяется константой Липшица декодера и минимальным отступом логитов. Этот формальный результат предлагает принципиальный подход к компромиссу между надежностью и емкостью в скрытых стеганографических системах. Эмпирическая оценка как на синтетических данных, так и в практических предметных областях, таких как отзывы на Amazon, показывает, что наш метод достигает высокой точности восстановления сообщений (выше 91%), высокую плавность текста и конкурентоспособную емкость до 6 бит на элемент предложения, сохраняя при этом устойчивость к нейронному стегоанализу. Эти результаты демонстрируют, что генерация со скрытым условием предлагает безопасный и практичный путь для встраивания информации в современные LLM.

Ключевые слова: стеганография, семантическое кодирование, языковые модели, донастройка префиксов, граф знаний, генерация естественного языка, скрытое обусловливание, нейронный стегоанализ.
1 - 8 из 8 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества