• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Метод предварительной оценки ответов обучающихся на основе векторной модели документов

Чулпан Бакиевна Миннегалиева, Гульшат Альфисовна Сабитова, Алмаз Маратович Гаялиев
324-339
Аннотация:

Рассмотрено применение векторных моделей для предварительного анализа ответов студентов, сформулированных в свободной форме. Векторные представления слов и документов получены при помощи моделей word2vec, doc2vec, BERT. Сходство ответа, данного обучающимся, и корректного ответа определялось с использованием косинусной меры. Выявлено, что векторные модели позволяют определить явно неверные ответы с достаточной точностью. Для ответов, которые близки по формулировке, предлагается провести дополнительный этап проверки. При помощи word2vec выполнена двоичная классификация ответов на определенные вопросы, приведены оценки точности, полноты, F1-меры.

Ключевые слова: векторная модель, word2vec, doc2vec, BERT, косинусное сходство, векторное представление.

О модели поиска синонимов

Ольга Муратовна Атаева, Владимир Алексеевич Серебряков, Наталия Павловна Тучкова
1006-1022
Аннотация:

Рассмотрена задача нахождения наиболее релевантных документов в результате расширенного и уточненного запроса. Для ее решения предложены модель поиска и механизм предварительной обработки текста, а также совместное использование поисковой системы и модели, построенной на основе индекса с помощью алгоритмов word2vec для генерации расширенного запроса с синонимами и уточнения результатов поиска на основе подбора похожих документов в цифровой семантической библиотеке. В работе исследуется построение векторного представления документов применительно к массиву данных цифровой семантической библиотеки LibMeta. Решалась задача обогащения пользовательских запросов синонимами. При построении модели поиска совместно с алгоритмами word2vec использован подход «сначала индексация, затем обучение», что позволяет получить более точные результаты поиска. Обучение модели проводилось на базе контента библиотеки для предметной области «Математика». Приведены примеры расширенного запроса с использованием синонимов.

Ключевые слова: модель поиска, алгоритм word2vec, синонимы, информационный запрос, расширение запроса.

Семантическое сходство в задаче аспектно-эмоционального анализа

Евгений Вячеславович Котельников, Павел Дмитриевич Блинов
120-137
Аннотация:

Исследуется проблема аспектно-эмоционального анализа текста. По сравнению с общим анализом тональности такой вариант является более сложным по причине наличия ряда сопутствующих подзадач, таких, как выделение аспектных терминов, определение тональности по отношению к этим терминам и аспектным категориям. Однако решение данной проблемы значительно расширяет возможности систем автоматического анализа неструктурированного текста.

Приведен обзор предыдущих работ в области аспектно-эмоционального анализа, описаны обучающие и тестовые данные семинара SentiRuEval. Для задачи извлечения аспектных терминов использовано векторное пространство распределенных представлений слов. Тональность аспектных терминов определяется на основе функций совместной информации и семантического сходства. Приведены сравнительные результаты на тестовых данных и заключительные выводы.

Ключевые слова: аспектно-эмоциональный анализ текста, взаимная информация, распределённые представления слов, машинное обучение, SentiRuEval.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества