• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Семантический анализ документов в системе управления цифровыми научными коллекциями

Шамиль Махмутович Хайдаров
61-85
Аннотация: Предложены методы семантического анализа документов в системе управления цифровыми научными коллекциями, в том числе электронными научными журналами. Рассмотрены методы обработки документов, содержащих математические формулы, а также способы конвертации этих документов из формата OpenXML в формат TeX. Разработан алгоритм поиска по формулам в коллекциях математических документов, хранящихся в формате OpenXML. Алгоритм реализован в виде онлайн-сервиса на платформе science.tatarstan.
Ключевые слова: семантический анализ, издательские системы.

Учёт структуры документа в методе автоматического аннотирования математических понятий в образовательных текстах

Константин Сергеевич Николаев
558-577
Аннотация:

Обогащение образовательных текстов семантическим содержимым (в частности, дополнение документа гиперссылками на страницы сервиса, отображающего подробную информацию о понятиях, используемых в тексте) способствует повышению эффективности усвоения материала обучающимися. Существующие методы семантической разметки образовательных текстов не учитывают структурные особенности таких документов, что приводит к избыточному распознаванию понятий.


В статье описано развитие метода автоматического аннотирования математических понятий в образовательных математических текстах путем добавления функционала для учета структуры образовательного документа. Основное назначение метода заключается в обработке образовательных материалов курса дистанционного образования «Технология решения планиметрических задач». Соблюдение единого шаблона при создании страниц курса позволяет применить анализ веб-разметки страниц и ключевых слов, примененных создателями курса. Основной задачей в данном процессе является определение типа ячеек таблицы, в которых находятся текстовые фрагменты образовательных материалов. В соответствии с рекомендациями создателей курса, определения необходимо выделять в ячейках, содержащих постановку задачи, а также в тех блоках, где указаны входные данные задачи. Определение типа ячеек таблиц производится с помощью анализа их атрибутов и поиска ключевых слов в их содержимом. Такое ограничение распознаваемых фрагментов текста позволяет улучшить восприятие страниц курса учеником и повысить качество усвоения учебного материала.

Ключевые слова: семантический анализ, математическая онтология, дидактические отношения, математическое образование, разметка документа.

Проект NewsAgent for Libraries: Персонифицированная служба оперативного информационного обеспечения

Р. Йетс
Аннотация: There are three main ways of obtaining information: searching, browsing and alerting. The first two are being widely developed by libraries using the Web, but the last has been somewhat neglected. The NewsAgent for Libraries project was originally funded under the eLib Programme by JISC (Joint Information Systems Committee of the UK higher education funding councils) as a two-year collaborative project started in April 1996.
Several small publishers of library and information science journals worked with network specialists, market evaluators and commercial software developers to design an open, distributed architecture for disseminating information via email and personalised Web pages. Dublin Core metadata was used, enhanced by NewsAgent specific keywords, to map stored user subject profiles against information feeds. Metadata was harvested using software robots to build an Oracle database where both user profiles and document attributes were stored.
Users can join the service via a Web page, to receive information updates by email or as a personalised Web page. Users can select predefined Topics in which they are interested, or create new named ones (stored queries). They can also modify existing Topics. Topics are presented in groups, called Channels.
A major part of the project was an extensive study of the potential end users of the service, before and after a prototype service was created. The project was considered a success, although further development of both software and marketing strategy were needed before a full scale launch could be planned. This is now expected in autumn 1999. In addition to this service, the software is being applied to other services by different organisations, targetted at groups such as small businesses, medical information and environmental information. It is expected that a commercial software package will be available from Fretwell-Downing Informatics as a result of the project.

Автоматизированное оценивание коротких ответов обучающихся с использованием языковых моделей

Чулпан Бакиевна Миннегалиева, Ильнур Илхамович Кашапов, Ольга Дмитриевна Морозова
278-293
Аннотация:

Методы проверки ответов обучающихся с использованием языковых моделей в настоящее время исследуются разными специалистами. Результаты автоматизированного оценивания зависят от предметной области и особенностей учебной дисциплины. В работе проанализированы ответы студентов, полученные в ходе изучения курса «Компьютерная графика и дизайн». При помощи языковых моделей определены векторы документов. Предложен метод оценивания ответов через нахождение косинусного сходства полученных векторов и уточнение оценок проверкой ключевых слов. Результаты могут использоваться при предварительной проверке ответов студентов и являются базой для дальнейших исследований. 

Ключевые слова: языковая модель, контроль знаний, обработка текста, ключевое слово ответа, автоматизированная оценка ответов обучающихся, косинусное сходство, векторное представление документа, BERT, word2vec, открытый вопрос.

Анализ распределения ключевых терминов в научных статьях

Светлана Александровна Власова, Николай Евгеньевич Каленов, Ирина Николаевна Соболевская
35-51
Аннотация:

Одними из основных компонентов Единого Цифрового Пространства Научных Знаний (ЕЦПНЗ) являются предметные онтологии отдельных тематических подпространств, включающие в себя основные понятия, относящиеся к данному научному направлению. Задача построения предметных онтологий на первом этапе требует формирования массива ключевых терминов в заданной области науки с последующим установлением связей между ними. Аналогичная задача стоит и при формировании энциклопедий в части определения перечня статей (слотов), определяющего их содержание. Одним из источников формирования массива ключевых терминов могут являться метаданные статей, опубликованных в ведущих научных журналах, а именно, авторские ключевые термины («ключевые слова» – в терминологии редакций журналов), сопровождающие в обязательном порядке эти статьи. Чтобы сделать заключение о возможности использования этого подхода к формированию предметных онтологий, необходимо провести предварительный анализ массива авторских ключевых терминов как с точки зрения реального соответствия основным направлениям исследований в данном разделе науки, так и с точки зрения распределения частоты встречаемости тех или иных терминов. В данной статье приведены результаты частотного анализа встречаемости авторских ключевых терминов на русском и английском языках, проведенного на основе программной обработки нескольких тысяч статей из ведущих российских журналов по математике, информатике и физике, отраженных в базе данных MathNet и на сайтах ряда издательств. Проведена оценка соответствия распределения ключевых терминов (как словосочетаний) и отдельных слов закону Брэдфорда, выявлены ядра ключевых терминов внутри тематических направлений.

Ключевые слова: цифровое пространство научных знаний, предметные онтологии, энциклопедические статьи, ключевые термины, метаданные статей, частотный анализ.

Идентификация авторов в рамках предметной области в семантической библиотеке

Ольга Муратовна Атаева, Владимир Алексеевич Серебряков, Наталия Павловна Тучкова
198-217
Аннотация:

Рассмотрены особенности задачи идентификации авторов и определения авторского вклада в публикации в цифровых библиографических коллекциях. Особенности проблемы недостаточной идентификации проявляются в повторах информации, двойниковании, наличии авторов с полностью совпадающими именами, самоцитировании, автоплагиате и собственно плагиате. Предлагается использовать информацию о публикациях, которая уже накоплена в цифровой библиотеке в виде связанных данных предметной области и множества данных тезауруса адресата, как автора и пользователя библиотеки. Эта информация содержит связи, благодаря которым для идентификации авторства можно использовать контексты ключевых слов, множества соавторов и ассоциативные связи терминов в словарях и тезаурусах. Важно, что рассматривается массив научных публикаций, поскольку они имеют сложившуюся традиционную структуру, что позволяет сравнивать фиксированные элементы текста (аннотации, ключевые слова, коды классификаторов и т. д.). Таким образом, даже при полном совпадении имен в публикациях можно ставить вопрос об авторстве, если в цифровой библиотеке публикации соответствуют различным предметным областям. Разрешение таких противоречий осуществляется путем оценки множества связей всех элементов вторичной информации о публикации. Результатом сравнения может быть добавление автора в некоторую предметную область, т. е. расширение тезауруса адресата и персонального тезауруса автора, или появление в библиотеке полных тезок, но из разных областей знаний. Показано, что современные средства анализа данных позволяют оценить вклад автора в публикацию, несмотря на то, что конечно, реальный вклад в научное исследование может оценить только научное сообщество.

Ключевые слова: сравнение научных текстов, семантический поиск, тезаурус для онтологии знаний, информационный запрос с помощью тезауруса, семантические библиотеки, способы идентификации авторов, тезаурус адресата, вторичная информация, частотный словарь индивидуума, LibMeta.

Технология наполнения предметных онтологий пространства научных знаний

Николай Евгеньевич Каленов
101-115
Аннотация:

Под предметной онтологией в контексте этой статьи понимается совокупность ключевых понятий, относящихся к некоторой области науки, с их семантическими связями, дополненная индексами различных классификационных систем, описывающих данную научную область. Предметные онтологии являются необходимой составляющей каждого подпространства, входящего в Единое цифровое пространство научных знаний (ЕЦПНЗ). В данной статье приводятся результаты исследований, связанных с построением предметных онтологий на базе созданной автоматизированной системы поддержки терминологических словарей и предлагается методология выделения новых ключевых терминов отдельной области науки. Предлагаемая методология базируется на использовании существующих классификационных систем в совокупности с базами данных цитирования (БДЦ), такими как Web of Science и Scopus для англоязычных публикаций и Российский индекс цитирования (РИНЦ) – для русскоязычных. Методология предполагает разбиение научной области на ряд разделов в соответствии с выбранной классификационной системой, выделение из БДЦ ядра статей, относящихся к каждому разделу, а из статей – новых авторских ключевых терминов, которые и должны составлять, в совокупности с соответствующими разделами классификационных систем, основу предметной онтологии данной научной области.

Ключевые слова: пространство научных знаний, предметная онтология, базы данных цитирования, ключевые термины, тезаурус для онтологии знаний, классификационные системы.
1 - 7 из 7 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества