• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Управление рисками и факторы уязвимости критической инфраструктуры

Надежда Павловна Комендантова
88-108
Аннотация:

Рассмотрены подходы к управлению рисками для таких сложных систем критической инфраструктуры, как система энергетики, и факторы, влияющие на уязвимость критической энергетической инфраструктуры в странах Европейского Союза.

Ключевые слова: факторы уязвимости, управление рисками, оценка рисков, каскадные эффекты, местный, национальный и межрегиональный уровни управления, линии передачи и распределения электроэнергии, тотальное отключение электричества.

Двухуровневая информационно-аналитическая система управления интеллектуальным светофором

Максим Владимирович Бобырь, Наталия Игоревна Храпова
696-717
Аннотация:

В современном мире проблемы, возникающие в сфере дорожного движения, имеют большую значимость. С целью решения существующих задач разрабатываются различные интеллектуальные системы, одной из которых является система «Умный город». Данная работа посвящена разработке информационно-аналитической системы (ИАС) для управления интеллектуальным светофором. Представленная система состоит из двух уровней, каждый из которых реализует набор определенных операций. Первый уровень отвечает за обнаружение объектов, в частности, пешеходов и автомобилей, находящихся на перекрестке, а второй уровень осуществляет расчёт времени работы сигналов светофора для управляющего сигнала, который передаётся на устройство. Для сравнительного анализа выбран комбинационный метод (HOG+SVM) Histogram of Oriented Gradients, основанный на подсчёте числа направлений градиента на отдельных областях изображения и Support Vector Machines, с помощью которого строятся гиперплоскости в n-мерном пространстве с целью разделения объектов, относящихся к разным классам. Результаты экспериментального исследования, в ходе которого проводилось распознавание объектов на изображениях, показали превосходство разработанной информационно-аналитической системы над существующими. Среднее значение точности выявления пешеходов и автомобилей посредством ИАС составило 69,4%. Кроме того, по результатам проведенного эксперимента сделан вывод, что точность выявления объектов на изображениях прямо пропорциональна расстоянию от видеокамеры до объекта.

Ключевые слова: интеллектуальный светофор, детектирование объектов, машинное обучение, нечётко-логический метод детектирования границ, YOLO, HOG, SVM.

Использование методов тематического анализа в наукометрических системах

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
315-338
Аннотация:

Во многих современных наукометрических системах и системах цитирования представлены различные механизмы тематического поиска и тематической фильтрации информации. В большинстве случаев для тематического анализа статей и журналов используется полнотекстовый подход, который имеет ряд ограничений. Использование алгоритмов, основанных на анализе графов как автономно, так и совместно с полнотекстовыми алгоритмами, позволяет устранить эти ограничения и улучшить полноту и точность тематического поиска. Алгоритм, разработанный авторами и представленный в этой работе, использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В интерфейсе, разработанном для этих целей, пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.

Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Определение тематической близости научных журналов и конференций с использованием анализа графа соавторства

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
514-525
Аннотация: Количество публикуемых в мире журналов очень велико. В этой связи, необходим программный инструментарий, который позволит анализировать тематические связи журналов. Разработанный авторами и представленный в этой работе алгоритм использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В разработанном для этих целей интерфейсе пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.
Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

How to Assign Points for Chores

Olga Kosheleva, Vladik Kreinovich
759-762
Аннотация: Many parents reward their children for doing different chores. The problem is that: while in the beginning, kids are very enthusiastic about performing chores and collecting points, by the time when they have accumulated a sufficient number of points, they become less and less interested. In this paper, we provide a decision theory solution on how many points to assign for consecutive chores.
Ключевые слова: chores, utility theory.

Анализ распределения ключевых терминов в научных статьях

Светлана Александровна Власова, Николай Евгеньевич Каленов, Ирина Николаевна Соболевская
35-51
Аннотация:

Одними из основных компонентов Единого Цифрового Пространства Научных Знаний (ЕЦПНЗ) являются предметные онтологии отдельных тематических подпространств, включающие в себя основные понятия, относящиеся к данному научному направлению. Задача построения предметных онтологий на первом этапе требует формирования массива ключевых терминов в заданной области науки с последующим установлением связей между ними. Аналогичная задача стоит и при формировании энциклопедий в части определения перечня статей (слотов), определяющего их содержание. Одним из источников формирования массива ключевых терминов могут являться метаданные статей, опубликованных в ведущих научных журналах, а именно, авторские ключевые термины («ключевые слова» – в терминологии редакций журналов), сопровождающие в обязательном порядке эти статьи. Чтобы сделать заключение о возможности использования этого подхода к формированию предметных онтологий, необходимо провести предварительный анализ массива авторских ключевых терминов как с точки зрения реального соответствия основным направлениям исследований в данном разделе науки, так и с точки зрения распределения частоты встречаемости тех или иных терминов. В данной статье приведены результаты частотного анализа встречаемости авторских ключевых терминов на русском и английском языках, проведенного на основе программной обработки нескольких тысяч статей из ведущих российских журналов по математике, информатике и физике, отраженных в базе данных MathNet и на сайтах ряда издательств. Проведена оценка соответствия распределения ключевых терминов (как словосочетаний) и отдельных слов закону Брэдфорда, выявлены ядра ключевых терминов внутри тематических направлений.

Ключевые слова: цифровое пространство научных знаний, предметные онтологии, энциклопедические статьи, ключевые термины, метаданные статей, частотный анализ.

Определение дефектов на стальных листах с использованием сверточных нейронных сетей

Родион Дмитриевич Гаскаров, Алексей Михайлович Бирюков, Алексей Федорович Никонов, Даниил Владиславович Агниашвили, Данил Айдарович Хайрисламов
1155-1171
Аннотация:

Сталь в наши дни является одним из важнейших производственных материалов, который используется повсеместно, от медицины до промышленных отраслей. Своевременное обнаружение и распознавание дефектов на стальных листах после проката – одна из ключевых проблем этого производства с учетом его сложности и необходимости затрат большого количества времени на проведение вручную проверок каждого листа и каждой заготовки. Одними из целей настоящей работы были автоматизация и упрощение данного процесса. Для решения соответствующих задач была использована, в первую очередь, модель сверточной нейронной сети под названием UNet, которая уже зарекомендовала себя как отличный инструмент решения таких задач — при высокой результативности она требует меньшего количества учебных данных. В основе этой модели лежат последовательная, производимая в несколько шагов свертка изображения до приемлемого размера (иными словами, сжатие или кодирование), а затем развертка, восстановление изображения к исходному размеру и соотношению сторон, после чего на выходе будет получена маска изображения с классами элементов, которые необходимо было найти. В дополнение к этой нейронной сети в качестве кодирующего (сворачивающего) слоя была использована другая модель — ResNet34, предварительно обученная на датасете (наборе данных) ImageNet1000. В этой модели также был модифицирован выходной слой — вместо 34 слоев с классами на выходе возвращалось лишь 4, что сократило время обработки и позволило использовать наиболее удачные определения в результатах. Используя данный подход и проведя все необходимые проверки, при подведении итогов, мы получили результат в 94,8% точности определения дефектов на стальных листах.

Ключевые слова: сверточные нейронные сети, нейронные сети, машинное обучение, сталь, искусственный интеллект, UNet, ResNet, определение дефектов, сегментация, классификация.

Индексы цитирования и оценка публикационной активности авторов

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
629-645
Аннотация:

В современном научном мире одним из способов оценки успешности научной деятельности ученого является вычисление различных показателей, основанных на количестве его публикаций и их цитируемости. При этом каждый соавтор публикации получает за нее одинаковое количество баллов. Подобный способ оценки приводит к искусственному увеличению количества соавторов, что, в свою очередь, влечет за собой искажение рейтинговых оценок научной деятельности в организации, а также значительно снижает качество тематического поиска по библиографическим данным экспертов, конференций и журналов. Представленный в работе метод позволяет оценить степень влияния указанного фактора на показатели, основанные на учете количества и цитируемости научных публикаций. Апробация метода проводилась на данных наукометрической системы ИАС «ИСТИНА».

Ключевые слова: ранжирование, наукометрия, наукометрические системы, соавторство, системы цитирования, научный рейтинг.

Использование графа соавторства для тематического поиска конференций по наукометрическим данным

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
600-615
Аннотация:

Применение современных методов тематического анализа для аналитической обработки больших объемов информации используется в настоящие время практически во всех сферах человеческой деятельности, в том числе, в наукометрии. Многие наукометрические системы и системы цитирования, включая всемирно известные WoS, Scopus, Google Shcolar, разрабатывают тематические рубрикаторы для поиска и обработки информации. Важными практическими задачами, которые могут решаться с применением методов тематической классификации, являются: оценка динамики развития тематических направлений в организации, в отдельной стране и мировой науке в целом; поиск статей по заданной тематике; поиск и оценка авторитетности экспертов; поиск журналов для публикации и другие актуальные задачи. Авторами созданы программные реализации алгоритмов для решения некоторых из перечисленных задач и ведутся научные исследования с целью создания новых эффективных математических моделей и алгоритмов в этой области.

Ключевые слова: тематический поиск, библиографические данные, поиск конференций, граф соавторства, информационные системы, наукометрия.
1 - 9 из 9 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества