Создание генератора псевдослов и классификация их схожести со словами словаря русского языка методами машинного обучения

Main Article Content

Кирилл Алексеевич Ромаданский
Артемий Евгеньевич Ахаев
Тагмир Радикович Гилязов

Аннотация

Под псевдословом понимается единица речи или текста, которая выглядит как реальное слово на русском языке, но на самом деле не имеет значения, а под настоящим или естественным словом – единица речи или текста, которая имеет толкование и представлена в словаре. Представлены две модели для работы с русским языком: генератор псевдослов и классификатор, оценивающий степень схожести введенной последовательности символов с настоящими словами. Классификатор использован для оценки результатов генератора. Обе модели основаны на рекуррентной нейронной сети с долгой краткосрочной памятью и обучены на датасете существительных русского языка. В результате создан файл, содержащий список сгенерированных псевдослов, оцененных классификатором. Псевдослова могут найти применение в задачах нейминга, брендирования и макетирования, в искусстве, для создания креативных произведений, и в языковых исследованиях, для изучения структуры языка и слов.

Article Details

Библиографические ссылки

1. Sagiroglu S., Sinanc D. Big Data: A Review // 2013 International Conference on Collaboration Technologies and Systems (CTS). 2013. P. 42–47.
2. Shim K. MapReduce algorithms for Big Data Analysis // Proceedings of the VLDB Endowment. 2012. V. 5. No. 12. P. 2016–2017.
3. Строев В.В., Тихонов А.И. Применение технологий Data Mining для поиска соответствий закономерностей развития в больших массивах веб-данных на основе инструментов анализа Big Data // E-Management. 2022. Т. 5. N 4. С. 4–11.
4. Kim J., Shin S., Bae K., Oh S. Can AI be a content creator? Effects of content creators and information delivery methods on the psychology of content consumers // Telematics and Informatics. 2020. V. 55. P. 101452.
5. Лалетина А.О. Языковая норма в эпоху глобализации // Ученые записки Казанского университета. Серия Гуманитарные науки. 2011. Т. 153. № 6. С. 219–226.
6. Москалёва М.В. Неологизмы и проблема их изучения в современном русском языке // Известия РГПУ им. А. И. Герцена. 2008. № 80. С. 246–250.
7. Дмитриева Д.Д. Изучение словообразования на занятиях по русскому языку как иностранному // Балтийский гуманитарный журнал. 2020. Т. 9. № 1(30). С. 47–49.
8. Shipley D., Hooky G.J., Wallace S. The brand name Development Process // International Journal of Advertising. 1988. V. 7. No. 3. P. 253–266.
9. Mazzola G., Carapezza M., Chella A., Mantoan D. Artificial Intelligence in Art Generation: An Open Issue // Image Analysis and Processing – ICIAP 2023 Workshops. 2023. V. 14366. P. 258–269.
10. Jarmulowicz L., Taran V.L. Lexical morphology // Topics in Language Disorders. 2013. V. 33. No. 1. P. 57–72.
11. Iqbal T., Qureshi S. The survey: Text generation models in deep learning // Journal of King Saud University - Computer and Information Sciences. 2022. V. 34. No. 6. P. 2515–2528.
12. Yu Y., Si X., Hu C., Zhang J. A review of Recurrent Neural Networks: LSTM cells and network architectures // Neural Computation. 2019. Т. 31. No. 7. P. 1235–1270.
13. Ketkar N. Introduction to Keras // Deep Learning with Python. Berkeley, CA: Apress, 2017. P. 97–111.
14. Helms M. Badestrand/Russian-Dictionary: Dataset of nouns, verbs, adjectives and others from my Russian dictionary website OpenRussian.org. [Электронный ресурс]. URL: https://github.com/Badestrand/russian-dictionary (дата обращения: 17.10.2023).
15. Rodríguez P., Bautista M.A., Gonzàlez J., Escalera S. Beyond one-hot encoding: Lower dimensional target embedding // Image and Vision Computing. 2018. V. 75. P. 21–31.
16. Mao A., Mohri M., Zhong Y. Cross-entropy loss functions: Theoretical analysis and applications // Proceedings of the 40th International Conference on Machine Learning. 2023. V. 202. P. 23803–23828.
17. Manaswi N.K. Understanding and Working with Keras // Deep Learning with Applications Using Python. Berkeley, CA: Apress, 2018. P. 31–43.


Наиболее читаемые статьи этого автора (авторов)