Digital Twin of Parking Space

Main Article Content

Timur Ruslanovich Batorshin
Ruslan Marselevich Gabbazov
Ruzel Ildarovich Fakhraziev
Alexey Sergeevich Katasev
Inzil Rinatovich Badrutdinov

Abstract

Increasing urbanization and motorization lead to a shortage of parking spaces, resulting in congestion, increased emissions, and a declining quality of life. Traditional parking management methods are ineffective in addressing this issue, necessitating the use of data analysis and forecasting tools. This paper examines the use of a digital twin of the Kazan parking system. Data was filtered and integrated, points of interest were clustered, and a correlation analysis of factors influencing parking occupancy was performed. Linear regression, decision tree, random forest, XGBoost, MLP, and LSTM models were trained and compared to predict occupancy levels. The random forest model demonstrated the best results. The developed digital twin prototype enables monitoring and scenario modeling, making it an effective tool for parking space optimization and management decision-making.

Article Details

How to Cite
Minnikhanov, R. N., T. R. Batorshin, R. M. . Gabbazov, R. I. Fakhraziev, A. S. Katasev, M. V. Dagaeva, and I. R. Badrutdinov. “Digital Twin of Parking Space”. Russian Digital Libraries Journal, vol. 28, no. 4, Nov. 2025, pp. 884-02, doi:10.26907/1562-5419-2025-28-4-884-902.

References

Amusan A.A., Ogunleye G.A. A Digital Twin-Enabled Smart Car Park Management System: Architecture and Impact on Emission Reduction // FUOYE Journal of Engineering and Technology. 2024. Vol. 9. No. 4. P. 629–635.
2. Coching J.K. et al. Digital Twinning Mechanism and Building Information Modeling for a Smart Parking Management System // Smart Cities. 2025. Vol. 8. No. 5. P. 146.
3. Zou Y. et al. A Digital Twin prototype for smart parking management // ECPPM 2022-eWork and eBusiness in Architecture, Engineering and Construction 2022. CRC Press, 2023. P. 250–257.
4. Chen W., Wang X., Wu M. Intelligent Parking Service System Design Based on Digital Twin for Old Residential Areas // Electronics. 2024. Vol. 13. No. 23. P. 4597.
5. Open Street Map. URL: https://www.openstreetmap.org/ (last access: 25.08.2025).
6. Gorparkovki Kazan'. Oficial'nyj sajt servisa parkovok . URL: https://parkingkzn.ru/ru/ (last access: 25.08.2025).
7. Aliguliyev R., Tahirzada S.F. Performance comparison of k-means, parallel k-means and k-means++ // Reliability: Theory & Applications. 2025. Vol. 20. No. S7 (83). P. 169–176.
8. Bazilevsky M.P. Reshenie optimizacionnoj zadachi ocenivaniya modelej polnosvyaznoj linejnoj regressii // Modeling and data analysis. 2024. Vol. 14. No. 1. P. 121–134.
9. Pyrnova O.A., Katasev A.S. Postroenie i ocenka effektivnosti modeli dereva reshenij dlya prognozirovaniya uspevaemosti obuchayushchihsya // Engineering Bulletin of the Don. 2024. No. 4 (112). P. 578–584.
10. Utkin L., Konstantinov A. Random survival forests incorporated by the Nadaraya-Watson regression // Informatics and Automation. 2022. Vol. 21. No. 5. P. 851–880.
11. Chen T., Guestrin C. XGBoost: A scalable tree boosting system // Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016. P. 785–794.
12. Matveeva K.A., Minnikhanov R.N., Katasev A.S. Svertochnaya nejrosetevaya model' akusticheskogo obnaruzheniya avarijno-spasatel'nyh mashin // Bulletin of the Technological University. 2024. Vol. 27. No. 1. P. 76–80.
13. Komartsova L.G., Kadnikov D.S. Issledovanie geneticheskih algoritmov dlya obucheniya mnogoslojnogo perseptrona // Neurocomputers: development, application. 2010. No. 12. P. 12–19.
14. Hochreiter S., Schmidhuber J. Long short-term memory // Neural computation. 1997. Vol. 9. No. 8. P. 1735–1780.
15. Emaletdinova L.Yu., Vildanov N.R., Katasev A.S. Ispol'zovanie nejrosetevoj modeli TCN-LSTM dlya prognozirovaniya znachenij vremennogo ryada // Scientific and Technical Bulletin of the Volga Region. 2023. No. 6. P. 62–64.


Most read articles by the same author(s)