Empirical Analogues of Statistical Tests with Guaranteed Conclusion

Main Article Content

Sergey Vladimirovich Simushkin

Abstract

Methods of kernel estimation of a priori density in the deconvolution problem are used to construct guaranteed procedures for distinguishing between two one-sided hypotheses. The situation is considered when the observed random variable is the sum of an unknown parameter and a centered normal error with a known variance. Consistent empirical estimates are constructed for the d-posterior risk function. The convergence of the corresponding critical constant to the optimal value is established. The accuracy of the procedures is illustrated numerically on three variants of the prior distribution.

Article Details

How to Cite
Заарур, Э. А., and S. V. Simushkin. “Empirical Analogues of Statistical Tests With Guaranteed Conclusion”. Russian Digital Libraries Journal, vol. 28, no. 4, Nov. 2025, pp. 870-83, doi:10.26907/1562-5419-2025-28-4-870-883.

References

1. Simushkin D.S., Simushkin S.V., Volodin I.N. On the d-posterior approach to the multiple testing problem // Journal of Statistical Computation and Simulation. 2021. Vol. 91, No. 4. P. 651-666.
2. Simushkin D.S. Optimal d-guarantee procedures for distinguishing two hypotheses // Dep. VINITI AN USSR. 1981, № 5547-81. 47 p.
3. Simushkin D.S. Empirical d- posterior approach to the problem of guarantee of statistical inference // Izvestiya VUZov. Mathematics. 1983, № 11. P. 42–58.
4. Scheffe G. The analysis of variance. N-Y.: J. Wiley & Sons, 1980. 512 p.
5. Liu M.C., Taylor R.L. A consistent nonparametric density estimator for the deconvolution problem // Canadian Journal of Statistics.1989. Vol. 17, No. 4. P. 427–438.
6. Carroll R.J., Hall P. Optimal rates of convergence for deconvolving a density // J. Am. Stat. Assoc. 1988. Vol. 83, No. 404. P. 1184–1186.
7. Stefanski L.A., Carroll R.J. Deconvolving kernel density estimators // Statistics, 1990. Vol. 21, No. 2. P. 169–184.
8. Zaarour E., Simushkin S.V. Consistency of the Empirical Bayesian Analogue of the Regression Estimation // Lobachevskii Journal of Mathematics. 2024. Vol. 45, No. 1. P. 551–554.
9. Meister A. Density estimation with normal measurement error with unknown variance // Statistica Sinica. 2006, Vol. 16. P. 195–211.


Most read articles by the same author(s)