Variations in Microseismic Noise Spectra as a Forecast Parameter of Earthquakes in the Baikal Rift System

Main Article Content

Lyudmila Petrovna Braginskaya
Andrey Pavlovich Grigoryuk
Valeriy Viktorovich Kovalevskiy
Anna Alexandrovna Dobrynina
Matvey Sergeevich Kim

Abstract

This paper examines the microseismic noise spectra a few hours before moderate and strong seismic events. Forty earthquakes with an energy class of K=9.5–14.5 at epicentral distances of 10 to 120 km were considered. A statistically significant increase in the spectral power density (SPD) was detected in the 0.8–2.4 Hz range. Machine learning methods were used to construct a binary classification model that allows detection of earthquake preparations a few hours before an event based on microseismic SPD values in the specified frequency range.

Article Details

How to Cite
Braginskaya, L. P., A. P. Grigoryuk, V. V. Kovalevskiy, A. A. Dobrynina, and M. S. Kim. “Variations in Microseismic Noise Spectra As a Forecast Parameter of Earthquakes in the Baikal Rift System ”. Russian Digital Libraries Journal, vol. 28, no. 4, Nov. 2025, pp. 727-39, doi:10.26907/1562-5419-2025-28-4-727-739.

References

1. Pulinets S., Herrera V.M.V. Earthquake Precursors: The Physics, Identification, and Application // Geosciences. 2024. Vol. 14 (209), P. 2–33.
https://doi.org/10.3390/geosciences14080209
2. Bogdanov V., Gavrilov V., Pulinets S., Ouzounov D. Responses to the preparation of strong Kamchatka earthquakes in the lithosphere–atmosphere–ionosphere system, based on new data from integrated ground and ionospheric monitoring // E3S Web Conf. 2020. Vol. 196 (03005) P. 1–14.
https://doi.org/10.1051/e3sconf/ 202019603005
3. Saltykov V.A. On the Possibility of Using the Tidal Modulation of Seismic Waves for Forecasting Earthquakes // Izvestiya, Physics of the Solid Earth. 2017. Vol. 53 (2), P. 250–261. https://doi.org/10.1134/S1069351317010128
4. Li J., Zhai H., Jiang C. et al. Application of artificial intelligence technology in the study of anthropogenic earthquakes // Artif Intell. 2025. Vol. 58 (155). https://doi.org/10.1007/s10462-025-11157-2
5. Kubo H., Nao M., Kano M. Recent advances in earthquake seismology using machine learning // Earth Planets. 2024. Vol .76 (36).
https://doi.org/10.1186/s40623-024-01982-0
6. Korol S.A., Sankov A.V., Dobrynina А.А., Sankov V.A. Ambient Seismic Noise Variations before Earthquakes in the Baikal Rift System // Geodynamics & Tectonophysics. 2022. Vol. 13 (2), 0632 (In Russ.). https://doi.org/10.5800/GT-2022-13-2s-0632
7. Sobolev G.A., Lyubushin A.A., Zakrzhevskaya N.A. Asymmetrical Pulses, the Periodicity and Synchronization of Low Frequency Microseisms // Journal of Volcanology and Seismology. 2008. Vol. 2, No. 2. P. 118–134. https://doi.org/10.1134/S07420 4630802005X
8. Seminsky K.Zh., Dobrynina A.A., Bornyakov S.A., Sankov V.A., Pospeev A.V., Rasskazov S.V., Perevalova N.P., Seminskiy I.K., Lukhnev A.V., Bobrov A.A., Chebykin E.P., Edemskiy I.K., Ilyasova A.M., Salko D.V., Sankov A.V., Korol S.A. Integrated monitoring of hazardous geological processes in Pribaikalye: pilot network and first results // Geodynamics & Tectonophysics. 2022. Vol. 13 (5), 0677 (In Russ.). https://doi.org/10.5800/GT-2022-13-5-0677
9. Grigoryuk A.P., Braginskaya L.P., Seminsky I.K., Seminsky K.Zh., Kovalevsky V.V. A Digital Platform for Integration and Analysis of Geophysical Monitoring Data from the Baikal Natural Zone // Russian Digital Libraries Journal. 2022. Vol. 25, No. 4. P. 303–316. https://doi.org/10.26907/1562-5419-2022-25-4-303-316.
10. Braginskaya L., Grigoryuk A., Kovalevsky V., Dobrynina A. Digital platform for integrated geophysical investigations in the Baikal region // Seismic Instruments. 2023. Vol. 59 (4), P. 36–49. https://doi.org/10.21455/ si2023.4-3
11. Earthquake-prediction-using-Machine-learning-models // A project done for the course CSE3505 — Essentials of Data Analytics under ELANGO N M. URL: https://github.com/akash-r34/Earthquake-prediction-using-Machine-learning-models?tab=readme-ov-file#earthquake-prediction-using-machine-learning-models


Most read articles by the same author(s)