New Possibilities of the Fourier Transformation: How to Describe an Arbitrary Frequency-Phase Modulated Signal?

Main Article Content

Raoul Rashidovich Nigmatullin

Abstract

In this paper, the authors found a transformation that is valid for any arbitrary signal. This transformation is strictly periodical and therefore it allows to apply the ordinary F-transformation for the fitting of the transformed signal. The most interesting application (in accordance with the author's opinion) is the fitting of the frequency-phase modulated signals that actually located inside the found transformation. This new transformation will be useful for application of the responses of different complex systems when an ordinary model is absent.


As an available data we consider meteo-data corresponding to measurements of methane concentration (CH4) in atmosphere during 4 weeks of its observation. For us it is important to consider the integral (cumulative) data and find their amplitude-frequency response (AFR). If one considers each column as frequency-phase modulated signal, then AFR can be evaluated with the help of F-transformation that has the period equals 2p that is valid for any analyzed random signal. This "universal" F-transformation allows to fit a wide set of random signals and compare them with each other in terms of their AFRs. Concluding the abstract one can say that these new possibilities of the traditional F-analysis will serve as a common tool in the armory of the methods used by researchers in data processing area.

Article Details

References

1. Mertins A. Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications. Wiley: Chichester, UK, 1999.
2. Arecchi F., Meucci R., Puccioni G., Tredicce J. Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser // Phys. Rev. Lett. 1982. Vol. 49. P. 1217–1220.
3. Chen J., Chau K., Chan C., Jiang Q. Subharmonics and chaos in switched reluctance motor drives // IEEE Trans. Energy Convers. 2002. Vol. 17. P. 73–78.
4. Lauterborn W., Cramer E. Subharmonic route to chaos observed in acoustics // Phys. Rev. Lett. 1981. Vol. 47. P. 1445.
5. Wilden I., Herzel H., Peters G., Tembrock G. Subharmonics, biphonation, and deterministic chaos in mammal vocalization // Bioacoustics. 1998. Vol. 9. P. 171–196.
6. Cohen L. Time-Frequency Analysis. Prentice Hall Press: NJ, USA, 1995; Vol. 778.
7. Almeida L.B. The fractional Fourier transform and time-frequency representations // IEEE Trans. Signal Process. 1994. Vol. 42. P. 3084–3091.
8. Sejdić E., Djurović I., Stanković L. Fractional Fourier transform as a signal processing tool: An overview of recent developments // Signal Process. 2011. Vol. 91. P. 1351–1369.
9. Su X., Tao R., Kang X. Analysis and comparison of discrete fractional Fourier transforms // Signal Process. 2019. Vol.160. P. 284–298.
10. Portnoff M. Time-frequency representation of digital signals and systems based on short-time Fourier analysis // IEEE Trans. Acoust. Speech Signal Process. 1980. Vol. 28. P. 55–69.
11. Qian S., Chen D. Joint time-frequency analysis // IEEE Signal Process. Mag. 1999. Vol. 16. P. 52–67.
12. Li M., Liu Y., Zhi S., Wang T., Chu F. Short-time Fourier transform using odd symmetric window function // J. Dyn. Monit. Diagn. 2022. Vol. 1. P. 37–45.
13. Hlubina P., Luňáček J., Ciprian D., Chlebus R. Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals // Opt. Commun. 2008. Vol. 281. P. 2349–2354.
14. Kemao Q. Windowed Fourier transform for fringe pattern analysis // Appl. Opt. 2004. Vol. 43. P. 2695–2702.
15. Qian S., Chen D. Discrete Gabor transform // IEEE Trans. Signal Process. 1993. Vol. 41. P. 2429–2438.
16. Yao J., Krolak P., Steele C. The generalized Gabor transform // IEEE Trans. Image Process. 1995. Vol. 4. P. 978–988.
17. Zhao Z., Tao R., Li G., Wang Y. Clustered fractional Gabor transform // Signal Process. 2020. Vol. 166. Article No. 107240.
https://doi.org/10.1016/j.sigpro.2019.107240Get rights and content
18. Mallat S. A Wavelet Tour of Signal Processing, 3rd ed. Academic Press: Burlington, MA, USA, 1999.
19. Yan R., Gao R.X., Chen X. Wavelets for fault diagnosis of rotary machines: A review with applications // Signal Process. 2014. Vol. 96. P. 1–15.
20. Kumar A. Wavelet signal processing: A review for recent applications // Int. J. Eng. Tech. 2020. Vol. 6. No. 6. P. 1–7.
21. Peng Z.K., Peter W.T., Chu F.L. A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing // Mech. Syst. Signal Process. 2005. Vol. 19. P. 974–988.
22. Zayed A.I. Hilbert transform associated with the fractional Fourier transform // IEEE Signal Process. Lett. 1998. Vol. 5. P. 206–208.
23. De Souza U.B., Escola J.P.L., da Cunha Brito L. A survey on Hilbert–Huang transform: Evolution, challenges and solutions // Digit. Signal Process. 2021. Vol. 120. No. 4. 103292. https://doi.org/10.1016/j.dsp.2021.103292
24. Bhattacharyya A., Singh L., Pachori R.B. Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals // Digit. Signal Process. 2018. Vol. 78. P. 185–196.
25. Chaudhary P.K., Gupta V., Pachori R.B. Fourier–Bessel representation for signal processing: A review // Digit. Signal Process. 2023. Vol. 135. 103938.
https://doi.org/10.1016/j.dsp.2023.103938Get rights and content
26. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998. Vol. 454. P. 903–995.
27. Wu Z., Huang N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method // Adv. Adapt. Data Anal. 2009. Vol. 1. P. 1–41.
28. Nigmatullin R.R., Alexandrov V., Agarwal P., Jain S., Ozdemir N. Description of Multi-Periodic Signals Generated By Complex Systems: NOCFASS – New Possibilities of the Fourier Analysis // Numerical Algebra, Control and Optimization. March 2024. Vol. 14. No. 1. P. 1–19. https://doi.org/10.3934/naco.2022008.


Most read articles by the same author(s)