Application of Computer Vision Methods to Old Tatar Text Recognition
Main Article Content
Abstract
A developed tool that recognizes strings, words and Arabic characters from scanned images. The possibilities and prospects for using the tool in research activities are considered. The results of experiments on the operational performance of the instrument are presented using the example of Old Tatar digitized images.
Keywords:
Article Details
References
2. Announcing Tesseract OCR – The official Google Code blog. URL: https://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html (дата обращения: 24.04.2024).
3. Rice S., Jenkins F., Nartker T. The Fourth Annual Test of OCR Accuracy. 2012. URL: https://www.researchgate.net/publication/247886491_The_Fourth_Annual_Test_of_OCR_Accuracy (дата обращения: 24.04.2024).
4. Андрианов А.И. Сравнение OCR-систем на основе точности анализа изображения // Бизнес-информатика. 2009. №4. URL: https://cyberleninka.ru/article/n/sravnenie-ocr-sistem-na-osnove-tochnosti-analiza-izobrazheniya (дата обращения: 01.05.2024)
5. Нестеров А.С. Анализ рынка современных информационных систем оптического распознавания символов (OCR) // Вопросы науки и образования. 2020. №23 (107). URL: https://cyberleninka.ru/article/n/analiz-rynka-sovremennyh-informatsionnyh-sistem-opticheskogo-raspoznavaniya-simvolov-ocr (дата обращения: 01.05.2024).
6. Pechwitz M., Maddouri S.S., Märgner V., Ellouze N., Amiri H. IFN/ENIT-database of handwritten Arabic words // Proc. of CIFED, Citeseer, 2002. P. 127–136.
7. Lawgali A., Angelova M., Bouridane A. HACDB: Handwritten Arabic characters da-tabase for automatic character recognition // European Workshop on Visual Information Processing (EUVIP), 2013. P. 255–259.
8. Altwaijry N., Al-Turaiki I. Arabic handwriting recognition system using convolutional neural network // Neural Comput. Appl. 2021. Vol. 33, No. 7. P. 2249–2261.
9. Balaha H.M., Ali H.A., Saraya M., Badawy M. A new Arabic handwritten character recognition deep learning system (AHCR-DLS) // Neural Comput. Appl. 2021. Vol. 33, no. 11. P. 6325–6367.
10. Nayef B.H., Abdullah S.N.H.S., Sulaiman R., Alyasseri Z.A.A. Optimized leaky ReLU for handwritten Arabic character recognition using convolution neural networks// Multimed. Tools Appl. 2022. Vol. 81, No. 2. P. 2065–2094.
11. Elkhayati M., Elkettani Y. UnCNN: A New Directed CNN Model for Isolated Arabic Handwritten Characters Recognition // Arab J. Sci. Eng. 2022. Vol. 47, No. 8. P. 10667–10688.
12. Balaha H.M. HMBD: Arabic Handwritten Characters Dataset. URL: https://github.com/HossamBalaha/HMBD-v1 (дата обращения: 09.05.2024).
13. Balaha H.M., Ali H.A., Saraya M. A new Arabic handwritten character recognition deep learning system (AHCR-DLS) // Neural Comput. Appl. 2021. Vol. 33. P. 6325–6367.
14. Zou Z., Chen K., Shi Z., Guo Y., Ye J. Object Detection in 20 Years: A Survey // Proceedings of the IEEE. 2023. Vol. 111, No. 3. P. 257–276.
15. Закирьянов И.И., Хаялеева И.З., Валишин И.А., Курито Е.Д., Фасхутдинов А.Н. Инструмент для распознавания языка жестов из видеопотока в режиме реального времени // Электронные библиотеки. 2023. Т. 26, № 6. URL: https://rdl-journal.ru/article/view/804/876 (дата обращения: 01.05.2024).
16. Mulyana D., Rowis M. Optimization of Text Mining Detection of Tajweed Reading Laws Using the Yolov8 Method on the Qur’an // QALAMUNA: Jurnal Pendidikan, Sosial, Dan Agama. 2022. Vol. 14, No. 2. P. 1089–1110.
17. Badr Al-Badr., Sabri A.M. Survey and bibliography of Arabic optical text recognition // Signal Processing. 1995. Vol. 41, Issue 1. P. 49–77.
18. Turki H., Elleuch M., Kherallah M., Damak A. Arabic-Latin Scene Text Detection based on YOLO Models // International Conference on Innovations in Intelligent Systems and Applications (INISTA), Hammamet, Tunisia, 2023. P. 1–6.
19. Rahal N., Tounsi M., Hussain A., Alimi A.M. Deep Sparse Auto-Encoder Features Learning for Arabic Text Recognition // IEEE Access. 2021. Vol. 9. P. 18569–18584.
20. Султанов М. Татар ханлары (تاتار خانلاري) // Типография братьев Каримвых. 1911. URL: https://darulkutub.com/uploads/books/820d9f6dcf1e868ee899d47e487b06189c2b816a.pdf (дата обращения: 01.05.2024).
21. Камал Ш. Акчарлаклар (آقچارلاقلر) // "Вакыт" матбагасы. 1915. URL: https://miras.info/projects/mirasxane/books/425-akcharlaklar-.html (дата обращения: 01.05.2024).
22. Аек бул (آيق بول) // Типо-литография Императорского университета. 1907. URL: https://darul-kutub.com/uploads/books/c3032b3c9136803dc0e38db69cd15541
fb24064b.pdf (дата обращения: 01.05.2024).
This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.