Development of Methods and Software Tools for the Formation of a Digital Portrait of Students
Main Article Content
Abstract
This paper considers the questions about the possibility of using data about the students presented in electronic form to build their digital portraits. A set of characteristics necessary for its construction is proposed, a data model is designated.
Implemented tools for collecting data about students from social networks and other Internet resources. Algorithms for constructing a digital portrait are proposed. The application of machine learning algorithms for these tasks is illustrated. Examples of the use of digital portraits in education are given.
Keywords:
Article Details
References
2. Pepper.ninja [Электронный ресурс]. URL: https://pepper.ninja/ (дата обращения: 28.10.2023).
3. Segmento Target [Электронный ресурс]. URL: https://segmento-target.ru/ (дата обращения: 28.10.2023).
4. TargetHunter [Электронный ресурс]. URL: https://targethunter.ru (дата обращения: 28.10.2023).
5. Церебро Таргет [Электронный ресурс]. URL: https://церебро.рф (дата обращения: 28.10.2023).
6. Top 50 open-source web crawlers for data mining [Электронный ресурс]. URL: https://bigdata-madesimple.com/top-50-open-source-web-crawlers-for-data-mining (дата обращения: 28.10.2023).
7. 8 Best Web Scraping Tools [Электронный ресурс]. URL: https://hevodata.com/learn/8-best-web-scraping-tools/ (дата обращения: 28.10.2023).
8. Обзор алгоритмов Data Mining [Электронный ресурс]. URL: https://www.intuit.ru/studies/courses/6/6/info (дата обращения: 28.10.2023).
9. Статистический портал «Statista» [Электронный ресурс]. URL: https://www.statista.com/statistics/867549/top-active-social-media-platforms-in-russia/ (дата обращения: 28.10.2023).
10. VK API [Электронный ресурс]. URL: https://vk.com/apiclub (дата обращения: 28.10.2023).
11. VK Java SDK [Электронный ресурс]. URL: https://vk.com/dev/Java_SDK (дата обращения: 28.10.2023).
12. ScribeJava. Simple OAuth library for Java [Электронный ресурс]. URL: https://github.com/scribejava/scribejava (дата обращения: 28.10.2023).
13. OAuth authorization framework [Электронный ресурс]. URL: https://oauth.net (дата обращения: 28.10.2023).
14. REST. Representational State Transfer [Электронный ресурс]. URL: https://restfulapi.net/ (дата обращения: 28.10.2023).
15. JSON. JavaScript Object Notation [Электронный ресурс]. URL: https://www.json.org/ (дата обращения: 28.10.2023).
16. Черезов Д.С., Тюкачев Н.А. Обзор основных методов классификации и кластеризации данных // Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2009. №. 2. С. 25–29.
17. Scikit-Learn. Machine Learning in Python [Электронный ресурс]. URL: https://scikit-learn.org/stable (дата обращения: 28.10.2023).
18. Numpy. The fundamental package for scientific computing with Python [Электронный ресурс]. URL: https://numpy.org/ (дата обращения: 28.10.2023).
19. Keras. Python deep learning API [Электронный ресурс]. URL: https://keras.io/ (дата обращения: 28.10.2023).
20. Kaggle. the world's largest data science community [Электронный ресурс]. URL: https://keras.io/ (дата обращения: 28.10.2023).
21. Dostoevsky. Sentiment analysis library for Russian language [Электронный ресурс]. URL: https://github.com/bureaucratic-labs/dostoevsky (дата обращения: 28.10.2023).
22. Selenium. Automates browsers [Электронный ресурс]. URL: https://www.selenium.dev/ (дата обращения: 28.10.2023).
23. Jsoup. Java HTML Parser [Электронный ресурс]. URL: https://jsoup.org/ (дата обращения: 28.10.2023).
24. Apache POI. Java API for Microsoft Documents [Электронный ресурс]. URL: https://poi.apache.org/ (дата обращения: 28.10.2023).
25. Печенкин В.В., Ярская-Смирнова Е.Р. Сетевые подходы в анализе социальной сплоченности // Вестник Саратовского государственного технического университета. 2014. Т. 4. № 1 (77).
This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.