Procedural Methods for Skinning Humanoid Characters

Main Article Content

Abstract

The procedure for setting vertex weights is a very time consuming and difficult task for any 3D model artist. Therefore, the use of procedural methods to facilitate this procedure is very important.


This article analyzes various skinning techniques and identifies their advantages and disadvantages. The most frequent variants of skinning defects that arise when using standard approaches are described. The analysis of tools for skinning in the Maya 3D modeling environment has been carried out. Methods for solving some of the existing problems are proposed, but do not imply a procedural solution. Also, on the basis of neural networks, an idea of their own solution was proposed as an additional tool for the Maya program. This tool will overcome most of the disadvantages of other methods and speed up the skinning process of the model.

Article Details

References

1. Create an automatic character rig for a mesh // Autodesk Maya. Support and learning. 2020. URL: https://knowledge.autodesk.com/support/maya/learn-explore/ caas/CloudHelp/cloudhelp/2020/ENU/Maya-CharacterAnimation/files/GUID-6CAEA6C2-D4F9-422D-8E0F-522171B47C35-htm.html (дата обращения 14.07.2022).
2. Nealen A., Müller M., Keiser R., Boxerman E., Carlson M. Physically Based De-formable Models in Computer Graphics // Computer Graphics Forum. 2006. Vol. 25. No. 4. P. 809–836.
3. Lasseter J. Principles of Traditional Animation Applied to 3D Computer Anima-tion // SIGGRAPH Comput. Graph. 1987. Vol. 21. No. 4. P. 35–44.
4. Gao M., Mitchell N., Sifakis E. Steklov–Poincaré Skinning // In Proceedings of the ACM SIG-GRAPH/Eurographics Symposium on Computer Animation (SCA’14). Eu-rographics Association. 2014. P. 139–148.
5. McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E. Effi-cient Elasticity for Character Skinning with Contact and Collisions // ACM Trans. Graph. 2011. Vol. 30. No. 4. P. 37:1–37:12.
6. Smith B., Goes F.D., Kim T. Stable Neo-Hookean Flesh Simulation // ACM Trans. Graph. 2018. Vol. 37. No. 2. P. 12:1–12:15.
7. Teng Y., Otaduy M.A., Kim T. Simulating Articulated Subspace Self-contact // ACM Trans. Graph. 2014. Vol. 33. No. 4. P. 106:1–106:9.
8. Bender J., Müller M., Macklin M. Position-Based Simulation Methods in Com-puter Graphics // In EG 2015-Tutorials. 2015. 32 p. URL: https://diglib.eg.org/handle/10.2312/egt.20151045.t3 (дата обращения 14.07.2022).
9. Bouaziz S., Martin S., Liu T., Kavan L., Pauly M. Projective Dynamics: Fusing Constraint Projections for Fast Simulation // ACM Trans. Graph. 2014. Vol. 33. No. 4. P. 154:1–154:11.
10. Rumman N.A., Fratarcangeli M. Position-Based Skinning for Soft Articulated Characters // Computer Graphics Forum. 2015. Vol. 34. No. 6. P. 240–250.
11. Deul C., Bender J. Physically-Based Character Skinning // In Virtual Reality In-teractions and Physical Simulations (VRIPhys). Eurographics Association. 2013. 11 p. URL: http://diglib.eg.org/handle/10.2312/PE.vriphys.vriphys13.025-034 (дата обра-щения 14.07.2022).
12. Komaritzan M., Botsch M. Projective Skinning // Proc. ACM Comput. Graph. Interact. Tech. 2018. Vol. 1. No. 1. P. 12:1–12:19.
13. Nieto J.R., Susín A. Cage based deformations: a survey // In Deformation models. Springer. 2013. P. 75–99.
14. Sederberg T.W., Parry S.R. Free-form Deformation of Solid Geometric Models // SIGGRAPH Comput. Graph. 1986. Vol. 20. No. 4. P. 151–160.
15. Lewis J.P., Cordner M., Fong N. Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation // In Proceedings of SIGGRAPH ’00. ACM. 2000. P. 165–172.
16. Kavan L., Sorkine O. Elasticity-inspired Deformers for Character Articulation // ACM Trans. Graph. 2012. Vol. 31. No. 6. P. 196:1–196:8.
17. Rohmer D., Hahmann S., Cani M.P. Exact Volume Preserving Skinning with Shape Control // In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’09). ACM, 2009. P. 83–92.
18. Funck W.V., Theisel H., Seidel H. Volume-preserving Mesh Skinning // Vision, Modelling, and Visualization 2008. Proceedings. 2008. P. 409–414.
19. Angelidis A., Singh K. Kinodynamic Skinning Using Volume-preserving Defor-mations // In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’07). Eurographics Association, 2007. P. 129–140.
20. Vaillant R., Barthe L., Guennebaud G., Cani M.P., Rohmer D., Wyvill B., Gourmel O., Paulin M. Implicit Skinning: Real-time Skin Deformation with Contact Mod-eling // ACM Trans. Graph. 2013. Vol. 32, No. 4. P. 125:1–125:12.
21. Vaillant R., Guennebaud G., Barthe L., Wyvill B., Cani M.P. Robust Iso-surface Tracking for Interactive Character Skinning // ACM Trans. Graph. 2014. Vol. 33. No. 6. P. 189:1–189:11.
22. Aldrich G., Pinskiy D., Hamann B. Walt Disney Anim. Studios. Collision-Driven Volumetric Deformation on the GPU // In Eurographics (Short Papers). 2011. P. 9–12.
23. Harmon D., Panozzo D., Sorkine O., Zorin D. Interference-aware Geometric Modeling // ACM Trans. Graph. 2011. Vol. 30. No. 6. P. 137:1–137:10.
24. Li Y., Barbič J. Multi-Resolution Modeling of Shapes in Contact // Symposium on Computer Animation (SCA). 2019.
25. Wang W. A Collision Deformer for Autodesk Maya / Master’s thesis // Texas A & M University. 2015. 54 p. URL: https://core.ac.uk/download/pdf/147244178.pdf (дата обращения 14.07.2022).
26. Brunel C., Bénard P., Guennebaud G. A time-independent deformer for elas-tic contacts // ACM Transactions on Graphics. 2021. Vol. 40. No. 4. Art. 3459879.
27. Wang Y., Jacobson A., Barbič J., Kavan L. Linear Subspace Design for Real-time Shape Deformation // ACM Trans. Graph. 2015. Vol. 34. No. 4. P. 57:1–57:11.
28. Aburumman N., Fratarcangeli M. State of the Art in Skinning Techniques for Articulated Deformable Characters // International Conference on Computer Graphics Theory and Applications. Rome. 2016. Vol. 1. P. 198–210. https://doi.org/10.5220/0005720101980210.
29. Dionne O., De Lasa M. Geodesic voxel binding for production character meshes // In Proceedings SCA 2013: 12th ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 2013. P. 173.
30. Rotenberg S. Skin / Chapter in course CSE169 // Computer Science & Engi-neering. 2016. URL: https://cseweb.ucsd.edu/classes/sp16/cse169-a/readings/3-Skin.html (дата обращения 14.07.2022).
31. Ju T., Zhou Q., V.D. Panne M., Cohen-Or D., Neumann U. Reusable Skinning Templates Using Cage-based Deformations // ACM Trans. Graph. 2008. Vol. 27. No. 5. Art. 122. 10 p. URL: https://www.cse.wustl.edu/~taoju/research/skinning_final2.pdf (дата обращения 14.07.2022).
32. Rohmer D., Tarini M., Kalyanasundaram N., Moshfeghifar F., Cani M., Zor-dan V. Velocity Skinning for Real-time Stylized Skeletal Animation // Computer Graphics Forum. 2021. Vol. 40. No. 2. P. 549–561. https://doi.org/10.1111/cgf.142654.
33. Zhan X., Yang Z., Evangelos K., Chris L., Karan S. RigNet: Neural Rigging for Articulated Characters // ACM Trans. Graph. 2020. Vol. 39. No. 4. P. 1-14.
34. Liu L., Zheng Y., Tang D., Yuan Y., Fan C., Zhou K. NeuroSkinning: Automatic Skin Binding for Production Characters with Deep Graph Networks // ACM Trans. Graph. 2019. Vol. 38. No. 4. P. 1–12.
35. Sahibgareeva G., Kugurakova V. Branched Structure Component for a Video Game Scenario Prototype Generator // CEUR Workshop Proceedings. 2021. Vol. 3066. P. 101–111.
36. Sahibgareeva G., Bedrin O., Kugurakova V. Visualization Component for the Scenario Prototype Generator as a Video Game Development Tool // CEUR. Proceedings of the 22nd Conference on Scientific Services & Internet (SSI-2020). 2020. Vol. 2784. P. 267-282.