Evaluation of interlocutors emotional state through sentiment analysis of messages for the anthropomorphic social agent

Main Article Content

Антон Анатольевич Алексеев
Влада Владимировна Кугуракова
Денис Сергеевич Иванов

Abstract

In this paper, we study the process of evaluating the psychological portrait of a human for the purposes of enhancing the human-machine communication in the frame of the anthropomorphic social agent. We understand “psychological portrait” as the current emotional state of the interlocutor, which is evident by their way of talking and their choice of words. By correctly identifying human’s emotional state, the machine can issue an appropriate response. Our study further describes how the emotional state can be examined and how a proper response should be formed.

Article Details

Author Biographies

Антон Анатольевич Алексеев

Bachelor of Kazan Federal University.

Влада Владимировна Кугуракова

Senior Lecturer of Higher School of Information Technology and Information Systems of Kazan Federal University, Head of Laboratory “Virtual and simulational technologies in biomedicine”.

Денис Сергеевич Иванов

Researcher of Laboratory “Virtual and simulational technologies in biomedicine” of Kazan Federal University.

References

1. Кугуракова В.В., Таланов М.О., Манахов Н.Р., Иванов Д.С. Антропоморфный социальный агент с симуляцией эмоций и его реализация // Russian Digital Libraries Journal. 2015. Т. 18, № 5. С. 254–268.
2. Aaronson S. My conversation with "Eugene Goostman", the Chatbot that's all over the news for allegedly passing the turing test". Shtetl-Optimized // The Blog of Scott Aaronson. Archived from the original on 2014-08-07. Retrieved 2014-09-12.
3. Oppy G., Dowe D. The turing test // Stanford Encyclopedia of Philosophy, 2011.
4. Wan V., Anderson R., Blokland A., Braunschweiler N., Chen L., Kolluru B., Latorre J., Maia R., Stenger B., Yanagisawa K., Stylianou Y., Akamine M., Gales M.J.F., Cipolla R. Photo-realistic expressive text to talking head synthesis// Source of the Document Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2013. P. 2667–2669.
5. Abdul-Mageed M., Diab M., Korayem M. Subjectivity and sentiment analysis of modern standard Arabic // In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 2011. P. 587–591.
6. Perez-Rosas V., Banea C., Mihalcea R. Learning sentiment lexicons in Spanish // In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12), 2012.
7. Pang B., Lee L. Opinion mining and sentiment analysis // Foundations and Trends in Information Retrieval. 2008. V. 2, No 1–2. P. 1–135.
8. Четверкин И.И., Лукашевич Н.В. Тестирование систем анализа тональности на семинаре РОМИП-2012. Т. 2: Доклады специальных секций РОМИП. М.: Изд-во РГГУ, 2013.
9. Liu Bing. Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Berlin: Springer, 2011.
10. Ильин Е.П. И46 Психология общения и межличностных отношений. СПб.: Питер, 2013.
11. Chenhao Tan, Lillian Lee, Jie Tang, Long Jiang, Ming Zhou, Ping Li. User-level sentiment analysis incorporating social networks// Proceedings of the Sixteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2011.
12. Mike Thelwall, Kevan Buckley, Georgios Paltoglou. Sentiment in Twitter events // Journal of the American Society for Information Science and Technology Archive. 2011. V. 62.
13. Justin Martineau, Tim Finin. Delta TFIDF: An Improved Feature Space for Sentiment Analysis. University of Maryland, Baltimore County 1000 Hilltop Circle, Baltimore, 2013.
14. Исследование Хабрахабр. URL: https://habrahabr.ru/post/149605/.
15. Тональный словарь. URL: http://linis-crowd.org/.
16. Русский корпус для анализа тональности текстов. URL: http://study. mokoron.com/.
17. Open-Source библиотека NLTK. URL: http://www.nltk.org.


Most read articles by the same author(s)

<< < 1 2 3 4