• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Automatic Annotation of Training Datasets in Computer Vision using Machine Learning Methods

Aleksey Konstantinovich Zhuravlev, Karen Albertovich Grigorian
718-729
Abstract:

This paper addresses the issue of automatic annotation of training datasets in the field of computer vision using machine learning methods. Data annotation is a key stage in the development and training of deep learning models, yet the process of creating labeled data often requires significant time and labor. This paper proposes a mechanism for automatic annotation based on the use of convolutional neural networks (CNN) and active learning methods.


The proposed methodology includes the analysis and evaluation of existing approaches to automatic annotation. The effectiveness of the proposed solutions is assessed on publicly available datasets. The results demonstrate that the proposed method significantly reduces the time required for data annotation, although operator intervention is still necessary.


The literature review includes an analysis of modern annotation methods and existing automatic systems, providing a better understanding of the context and advantages of the proposed approach. The conclusion discusses achievements, limitations, and possible directions for future research in this field.

Keywords: computer vision, machine learning, automatic data annotation, training datasets, image segmentation.

Generation of Three-Dimensional Synthetic Datasets

Vlada Vladimirovna Kugurakova, Vitaly Denisovich Abramov, Daniil Ivanovich Kostiuk, Regina Airatovna Sharaeva, Rim Radikovich Gazizova, Murad Rustemovich Khafizov
622-652
Abstract:

The work is devoted to the description of the process of developing a universal toolkit for generating synthetic data for training various neural networks. The approach used has shown its success and effectiveness in solving various problems, in particular, training a neural network to recognize shopping behavior inside stores through surveillance cameras and training a neural network for recognizing spaces with augmented reality devices without using auxiliary infrared cameras. Generalizing conclusions allow planning the further development of technologies for generating three-dimensional synthetic data.

Keywords: synthetic data, synth data, dataset, artificial intelligence, AI, neural networks, NN, machine learning, ML, computer vision, three-dimensional models, 3D, metahuman, game engine, unreal engine, UE.

Automatic Annotation of HTML Documents using the Microdata Standard

Timur Ferdinandovich Ibragimov, Alexander Andreevich Ferenets
730-744
Abstract:

The development of an application based on machine learning methods for automatic annotation of web pages according to the Microdata standard is described, with the possibility of extension to other standards and injecting data to JSX files. Datasets were collected and prepared for training Machine Learning (ML) models. The ML model metrics were collected and analyzed.

Keywords: Microdata, semantic markup, HTML5, search engine optimization (SEO), search engines, machine learning, schema.org, semantic web, markup standards, SEO automation.

Of Neural Network Model Robustness Through Generating Invariant to Attributes Embeddings

Marat Rushanovich Gazizov, Karen Albertovich Grigorian
1142-1154
Abstract:

Model robustness to minor deviations in the distribution of input data is an important criterion in many tasks. Neural networks show high accuracy on training samples, but the quality on test samples can be dropped dramatically due to different data distributions, a situation that is exacerbated at the subgroup level within each category. In this article we show how the robustness of the model at the subgroup level can be significantly improved with the help of the domain adaptation approach to image embeddings. We have found that application of a competitive approach to embeddings limitation gives a significant increase of accuracy metrics in a complex subgroup in comparison with the previous models. The method was tested on two independent datasets, the accuracy in a complex subgroup on the Waterbirds dataset is 90.3 {y : waterbirds;a : landbackground}, on the CelebA dataset is 92.22 {y : blondhair;a : male}.

Keywords: robust classification, image classification, generative adversarial networks, domain adaptation.
1 - 4 of 4 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society