Автоматическое извлечение аргументативных отношений из текстов научной коммуникации
Main Article Content
Аннотация
Сложность задачи извлечения аргументативных структур связана с такими проблемами, как выделение аргументативных сегментов, прогнозирование дальних связей между неконтактными сегментами, обучение на данных, размеченных с низкой степенью согласованности между аннотаторами. В настоящей работе рассмотрен подход к извлечению аргументативных отношений из достаточно больших текстов, относящихся к области научной коммуникации. Проведен сравнительный анализ методов тонкой настройки с использованием предобученной языковой модели типа Longformer, позволяющей учитывать длинные контексты, и двух методов, позволяющих учитывать расхождения аннотаторов в разметке аргументов за счет использования так называемых мягких меток, полученных путем равномерного сглаживания меток и усреднения экспертных оценок. Эксперименты проводились на четырех наборах данных, содержащих положительные и отрицательные примеры пар утверждений (посылка, заключение) и различающихся способами сегментации и средним размером текста. Наилучшие результаты получены на модели с усреднением экспертных оценок. В то же время отмечено, что модель, использующая сглаженные метки, также повышает точность классификаторов, но ухудшает полноту.
Article Details
Библиографические ссылки
2. Lukasik M., Bhojanapalli S., Menon A., Kumar S. Does label smoothing mitigate label noise? // Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020, Vol. 119, P. 6448–6458. URL: https://proceedings.mlr.press/v119/lukasik20a.html
3. Haque S., Bansal A., McMillan C. Label smoothing improves neural source code summarization // 2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC), Melbourne, Australia, 15–16 May 2023. Institute of Electrical and Electronics Engineers: 2023. P. 101–112. https://doi.org/10.1109/ICPC58990.2023.00025
4. Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. Rethinking the Inception Architecture for Computer Vision // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June, 2016. Institute of Electrical and Electronics Engineers: P. 2818–2826. https://doi.org/10.1109/CVPR.2016.308
5. Wang Y., Wang M., Chen Y., Tao S., Guo J., Su C., Zhang M., Yang H. Capture Human Disagreement Distributions by Calibrated Networks for Natural Language Inference // Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland. May 2022. Association for Computational Linguistics: 2022, P. 1524–1535. https://doi.org/10.18653/v1/2022.findings-acl.120
6. Timofeeva M.K., Ilina D.V., Kononenko I.S. Argumentative Annotation of the Scientific Internet-Communication Corpus: Genre Analysis and Study of Typical Reasoning Models based on the ArgNetBank Studio Platform // NSU Vestnik. Series: Linguistics and Intercultural Communication. 2024. Vol. 22, No. 1. P. 27–49. (In Russ.) https://doi.org/10.25205/1818-7935-2024-22-1-27-49
7. Shestakov V.K., Kononenko I.S., Sidorova E.A., Zagorulko Yu.A. Assessing Inter-Annotator Agreement on Argumentative Markup // 2024 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE: 2024, P. 309–313. https://doi.org/10.1109/SIBIRCON63777.2024.10758535
8. Akhmadeeva I., Sidorova E., Ilina D. Argument mining in scientific communication: Comparative study // Internet and modern society. Human-computer communication. Cham: Springer Nature Switzerland, 2026. P. 152–166. https://doi.org/10.1007/978-3-031-96177-9_13
9. Beltagy I., Peters M. E., Cohan A. Longformer: The long-document transformer //arXiv preprint arXiv:2004.05150. 2020.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Представляя статьи для публикации в журнале «Электронные библиотеки», авторы автоматически дают согласие предоставить ограниченную лицензию на использование материалов Казанскому (Приволжскому) федеральному университету (КФУ) (разумеется, лишь в том случае, если статья будет принята к публикации). Это означает, что КФУ имеет право опубликовать статью в ближайшем выпуске журнала (на веб-сайте или в печатной форме), а также переиздавать эту статью на архивных компакт-дисках журнала или включить в ту или иную информационную систему или базу данных, производимую КФУ.
Все авторские материалы размещены в журнале «Электронные библиотеки» с ведома авторов. В случае, если у кого-либо из авторов есть возражения против публикации его материалов на данном сайте, материал может быть снят при условии уведомления редакции журнала в письменной форме.
Документы, изданные в журнале «Электронные библиотеки», защищены законодательством об авторских правах, и все авторские права сохраняются за авторами. Авторы самостоятельно следят за соблюдением своих прав на воспроизводство или перевод их работ, опубликованных в журнале. Если материал, опубликованный в журнале «Электронные библиотеки», с разрешения автора переиздается другим издателем или переводится на другой язык, то ссылка на оригинальную публикацию обязательна.
Передавая статьи для опубликования в журнале «Электронные библиотеки», авторы должны принимать в расчет, что публикации в интернете, с одной стороны, предоставляют уникальные возможности доступа к их материалам, но, с другой, являются новой формой обмена информацией в глобальном информационном обществе, где авторы и издатели пока не всегда обеспечены защитой от неправомочного копирования или иного использования материалов, защищенных авторским правом.
При использовании материалов из журнала обязательна ссылка на URL: http://rdl-journal.ru. Любые изменения, дополнения или редактирования авторского текста недопустимы. Копирование отдельных фрагментов статей из журнала разрешается для научных исследований, персонального использования, коммерческого использования до тех пор, пока есть ссылка на оригинальную статью.
Запросы на право переиздания или использования любых материалов, опубликованных в журнале «Электронные библиотеки», следует направлять главному редактору Елизарову А.М. по адресу: amelizarov@gmail.com
Издатели журнала «Электронные библиотеки» не несут ответственности за точки зрения, излагаемые в публикуемых авторских статьях.
Предлагаем авторам статей загрузить с этой страницы, подписать и выслать в адрес издателя журнала по электронной почте скан Авторского договора о передаче неисключительных прав на использование произведения.