• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Анализ моделей векторных представлений слов в задаче разметки семантических ролей в русскоязычных текстах

Лейсан Маратовна Кадермятова, Елена Викторовна Тутубалина
1026-1043
Аннотация: Изучено влияние использования векторных представлений слов на качество установления семантических ролей в русскоязычных текстах. Задача установления семантических ролей в русскоязычных текстах получила широкое распространение после выхода на свет корпуса FrameBank. Были исследованы модели векторных представлений слов word2vec, fastText и ELMo (Embeddings from Language Models). Анализировались метрики качества микро- и макро-F1 как оценочные показатели результатов автоматической разметки актантов. Был проведен ряд экспериментов, демонстрирующих, что модели ELMo, основанные на токенах предикатно-аргументных конструкций, показывают больший прирост качества по сравнению со всеми остальными моделями, в том числе, в сопоставлении с моделями ELMo, обученными на леммах, как по величине микро-F1, так и по величине макро-F1.
Ключевые слова: машинное обучение, обработка естественного языка, векторные представления слов, семантические роли.

Технология ситуационного моделирования в системах виртуального окружения

Михаил Васильевич Михайлюк, Дмитрий Алексеевич Кононов, Дмитрий Михайлович Логинов
889-901
Аннотация:

Обсуждена технология моделирования различных ситуаций в системах виртуального окружения, которые являются компьютерными трехмерными моделями реальной или искусственной среды. Пользователь может рассматривать эти сцены непосредственно на экране компьютера, настенном экране, в стерео очках, в очках виртуальной реальности и т. д. Он также может перемещаться внутри виртуальной сцены и взаимодействовать с ее объектами. В свою очередь среда также может изменяться. Это позволяет проводить в системе виртуального окружения моделирование различных ситуаций (ситуационное моделирование). При таком моделировании задается некоторая статическая или динамическая обстановка в системе виртуального окружения, в которой оператор должен выполнить поставленные перед ним задачи.


Предложен механизм задания ситуаций путем изменения виртуальной трехмерной сцены с помощью конфигурационных файлов и виртуальных пультов управления. Для записи конфигурационных файлов разработан специальный язык, а для создания виртуальных пультов управления – специальный редактор. Представлена апробация предложенных методов на примере двух виртуальных сцен: полигона для мобильных роботов и реактивного рюкзака спасения космонавта в открытом космосе.

Ключевые слова: открытый доступ, система виртуального окружения, ситуационное моделирование, трехмерная сцена, конфигурационный файл, виртуальный пульт управления.

Применение моделей мышления в интеллектуальных вопросно-ответных системах

Александр Сергеевич Тощев
222-230
Аннотация: Описана эволюция моделей мышления в рамках решения задачи построения интеллектуальной вопросно-ответной системы для автоматизации обработки запросов пользователей на естественном языке, начиная от простой модели на основе деревьев решений и заканчивая полноценной моделью мышления, основанной на модели мышления человека Марвина Мински. Каждая модель разработана и протестирована. Приведены результаты экспериментов и сделаны выводы о состоятельности каждой из моделей.
Ключевые слова: искусственный интеллект, машинное обучение, системный анализ, машинное мышление, обработка естественного языка, деревья решений.

Автоматизированное оценивание коротких ответов обучающихся с использованием языковых моделей

Чулпан Бакиевна Миннегалиева, Ильнур Илхамович Кашапов, Ольга Дмитриевна Морозова
278-293
Аннотация:

Методы проверки ответов обучающихся с использованием языковых моделей в настоящее время исследуются разными специалистами. Результаты автоматизированного оценивания зависят от предметной области и особенностей учебной дисциплины. В работе проанализированы ответы студентов, полученные в ходе изучения курса «Компьютерная графика и дизайн». При помощи языковых моделей определены векторы документов. Предложен метод оценивания ответов через нахождение косинусного сходства полученных векторов и уточнение оценок проверкой ключевых слов. Результаты могут использоваться при предварительной проверке ответов студентов и являются базой для дальнейших исследований. 

Ключевые слова: языковая модель, контроль знаний, обработка текста, ключевое слово ответа, автоматизированная оценка ответов обучающихся, косинусное сходство, векторное представление документа, BERT, word2vec, открытый вопрос.

Создание генератора псевдослов и классификация их схожести со словами словаря русского языка методами машинного обучения

Кирилл Алексеевич Ромаданский, Артемий Евгеньевич Ахаев, Тагмир Радикович Гилязов
145-162
Аннотация:

Под псевдословом понимается единица речи или текста, которая выглядит как реальное слово на русском языке, но на самом деле не имеет значения, а под настоящим или естественным словом – единица речи или текста, которая имеет толкование и представлена в словаре. Представлены две модели для работы с русским языком: генератор псевдослов и классификатор, оценивающий степень схожести введенной последовательности символов с настоящими словами. Классификатор использован для оценки результатов генератора. Обе модели основаны на рекуррентной нейронной сети с долгой краткосрочной памятью и обучены на датасете существительных русского языка. В результате создан файл, содержащий список сгенерированных псевдослов, оцененных классификатором. Псевдослова могут найти применение в задачах нейминга, брендирования и макетирования, в искусстве, для создания креативных произведений, и в языковых исследованиях, для изучения структуры языка и слов.

Ключевые слова: генерация слов, псевдослово, нейронная сеть, рекуррентная нейронная сеть, долгая краткосрочная память.

Автоматизированная система выбора оптимальных методов решения акустических задач на базе онтологии

Ирина Леонидовна Артемьева, Алина Евгеньевна Чусова
719-737
Аннотация:

Представлен программный комплекс, который позволит специалистам в области архитектурной акустики выбрать наиболее подходящие способы моделирования звука и подбора отделочных материалов в зависимости от поставленных задач и параметров помещения. Отличительной особенностью данной системы является наличие онтологии предметной области, описывающей термины и связи между понятиями, а также модулей для решения различных задач в области архитектурной акустики. Подобный подход позволит рекомендовать пользователю наиболее подходящие для его запроса методы моделирования вследствие учета специфики помещения и функциональных требований клиента. Программная система позволит по запросу оптимизировать и распараллелить программы, которые написаны с помощью предметно-ориентированного языка программирования.


Описаны принципы анализа программного кода для выявления участков экономии и применения трансформаций, представленных в банке паттернов. Рассмотрен также подход к построению предметно-ориентированного языка программирования, основанного на онтологии предметной области ODSL (Ontology-Based Domain-Specific Language) и позволяющего специалистам описывать алгоритмы, не вникая в используемые методы оптимизации и распараллеливания. Новизна работы заключается в предложенной архитектуре модулей, основанных на прикладной онтологии, что позволяет адаптировать решение под другие предметные области.

Ключевые слова: онтология, архитектурная акустика, оптимизация, параллелизм, ODSL.

Рефал-сервер

Александр Альфредович Гусев
697-707
Аннотация: Работа посвящена описанию проекта обновления и распространения языка программирования Рефал (далее – просто Рефал), созданного в СССР в 1960-х годах В.Ф. Турчиным. Язык изначально предназначался для различных логических преобразований, прежде всего, текстового материала и ориентирован на использование непрограммистами. На практике сфера применения оказалась шире: машинный перевод, оптимизация и компиляция программ, доказательство теорем, моделирование сложных электронных схем, решение ряда задач искусственного интеллекта. Язык сейчас имеет достаточное количество последователей, главным образом, в научных кругах.Задачей описываемого проекта является создание продукта, позволяющего использовать Рефал в современных массовых приложениях и расширить круг его потенциальных пользователей до всего интернета. Был проведён опрос сообщества пользователей и разработчиков Рефала с целью получения представления о текущем состоянии дел, актуальных реализациях и путях развития языка. Были рассмотрены возможные средства реализации проекта. Информации о ведущихся аналогичных разработках получено не было.
Ключевые слова: Рефал, сервер, обработка текстов, xml, json, искусственный интеллект, метавычисления.

Базы знаний для описания информационных ресурсов в молекулярной спектроскопии 1. Модель данных в количественной спектроскопии

Н.А. Лаврентьев, А.И. Привезенцев, А.З. Фазлиев
Аннотация: Представлена модель данных предметной области «Количественная спектроскопия», необходимая для построения информационной системы. В качестве языка описания использован XML. Основное внимание уделено характеристике сущностей и отношений, используемых в двух частях этой предметной области – «Вещество» и «Молекулярная спектроскопия». При спецификации семантики данных рассмотрены только конкретные свойства (Datatype) и ограничения на области их значений.

Распределенная тренировка ML-модели на мобильных устройствах

Денис Васильевич Симон, Ирина Сергеевна Шахова
1076-1092
Аннотация: В настоящее время потребность в наличии решений по распределенной тренировке ML-модели в мире возрастает. Однако существующие инструменты, в частности, TensorFlow Federated, – в самом начале своего развития, сложны в реализации и пригодны на текущий момент исключительно для симуляции на серверах. Для мобильных устройств надежно работающих подходов для достижения этой цели не существует. В статье спроектирован и представлен подход к такой распределенной тренировке ML-модели на мобильных устройствах, реализуемый с использованием существующих технологий. В его основе лежит концепция model personalization. В данном подходе эта концепция улучшена как следствие смягчения выявленных недостатков. Процесс реализации выстроен так, чтобы на всех этапах работы с ML-моделью использовать только один язык программирования Swift (применяются Swift for TensorFlow и Core ML 3), делая такой подход еще более удобным и надежным благодаря общей кодовой базе.
Ключевые слова: ML-модель, распределенная тренировка ML-модели, мобильная разработка, программная инженерия, машинное обучение, on-device ML, on-device training, edge computing.

Использование семантического поиска для выбора и ранжирования научных геологических публикаций

Михаил Иванович Патук, Вера Викторовна Наумова
758-773
Аннотация:

Агрегирование научной информации играет важную роль для комплексного анализа геологических объектов. В настоящей работе мы рассматриваем потенциал и возможности семантического поиска для выбора тематически близких геологических публикаций. Проанализированы различные языковые модели в контексте нахождения сходства и различия между текстами при описании месторождений полезных ископаемых. Показано значительное улучшение результатов поиска после дополнительной тренировки языковых моделей. Представлены два веб-сервиса, основанных на методе расчета семантической близости текстов с количественной оценкой меры близости.

Ключевые слова: искусственный интеллект, машинное обучение, обработка естественного языка, семантический поиск, геология.

Построение онтологии предметной области на основе логической модели данных

Александр Михайлович Гусенков, Наиль Раисович Бухараев, Евгений Васильевич Биряльцев
390-417
Аннотация: Представлена технология автоматизированного построения онтологии предметной области на основе информации, извлекаемой из комментариев реляционных баз данных ПАО «Татнефть». Технология основана на построении конвертора (компилятора), транслирующего логическую модель данных Epicentre Petrotechnical Open Software Corporation (POSC), представленную в виде ER-диаграмм и набора описаний на объектно-ориентированном языке EXPRESS, в язык описания онтологий OWL, рекомендованный консорциумом W3C. Описаны основные синтаксические и семантические аспекты преобразования.
Ключевые слова: онтология предметной области, реляционные базы данных, POSC, OWL.

Добавление статической типизации в язык функционально-потокового параллельного программирования

Александр Иванович Легалов, Игорь Александрович Легалов, Иван Васильевич Матковский
788-807
Аннотация: Предложено добавить статическую систему типов в функционально-потоковую модель параллельных вычислений и разработанный на ее основе язык функционально-потокового параллельного программирования. Использование статической типизации повышает возможность трансформации функционально-потоковых параллельных программ в программы, выполняемые на современных параллельных вычислительных системах. Предложены языковые конструкции. Описаны их синтаксис и семантика. Отмечена необходимость использования принципа единственного присваивания при формировании хранилищ данных конкретного типа. Рассмотрены особенности инструментальной поддержки предлагаемого подхода.
Ключевые слова: парадигмы программирования, параллельное программирование, функционально-потоковое параллельное программирование, статическая типизация, модели параллельных вычислений.

Нейросетевая архитектура воплощенного интеллекта

Айрат Рафкатович Нурутдинов
598-655
Аннотация:

В последние годы достижения в области искусственного интеллекта (ИИ) и машинного обучения обусловлены успехами в разработке больших языковых моделей (LLM) на основе глубоких нейронных сетей. В то же время, несмотря на существенные возможности, LLM имеет такие принципиальные ограничения, как спонтанная недостоверность в фактах и суждениях; допущение простых ошибок, диссонирующих с высокой компетентностью в целом; легковерие, проявляющееся в готовности принимать за истину заведомо ложные утверждения пользователя; отсутствие сведений о событиях, произошедших после завершения обучения.


Вероятно, ключевой причиной является то, что обучение биологического интеллекта происходит через усвоение неявных знаний воплощенной формой интеллекта, позволяющей решать интерактивные физические задачи реального мира. Биоинспирированные исследования нервных систем организмов позволяют рассматривать мозжечок, координирующий движения и поддерживающий равновесие, в качестве главного кандидата для раскрытия методов реализации воплощенного физического интеллекта. Его простая повторяющаяся структура и способность управлять сложными движениями дают надежду на возможность создания аналога адаптивным нейронным сетям.


В настоящей работе изучается биоинспирированная архитектура мозжечка как форма аналоговых вычислительных сетей, способная моделировать сложные физические системы реального мира. В качестве простого примера представлена реализация воплощенного ИИ в виде многокомпонентной модели щупальца осьминога, демонстрирующей потенциал в создании адаптивных физических систем, обучающихся и взаимодействующих с окружающей средой.

Ключевые слова: Искусственные нейронный сети, большие языковые модели, неявное обучение, мозжечок, аналоговые компьютеры, воплощенный интеллект, мягкие роботы, осьминоги.

Алгоритм определения переводов статей с использованием статистических данных

Александр Сергеевич Козицын, Сергей Александрович Афонин, Андрей Александрович Зензинов
494-505
Аннотация: В настоящее время происходит активное внедрение наукометрических систем для автоматизации процесса анализа эффективности деятельности научных организаций с целью применения различных методов стимулирования научной деятельности. Одними из наиболее важных индикаторов являются количество публикаций и их цитируемость. Для оценки этих показателей необходимы средства автоматизированного построения связей между оригинальными статьями и их переводами. В настоящей работе проанализированы существующие методы оценки близости оригинального текста и его возможного перевода, показана их недостаточная эффективность для построения связей между статьями и описаня разработанный авторами метод автоматического поиска переводов статей в больших коллекциях библиографических данных. Особенностью разработанного алгоритма является использование статистических данных о публикации статей в различных журналах и информации о соавторах анализируемых статей. Представленный в настоящей работе алгоритм позволяет осуществлять поиск переводов статей без предварительной настройки на заданные пары языков оригинала и перевода статьи, а также не требует использования больших коллекций обучающих выборок. Апробация программной реализации алгоритма проводилась в наукометрической системе Московского государственного университета (МГУ) им. М.В. Ломоносова. Результаты тестирования показали ее достаточную эффективность и возможность использования разработанного алгоритма для автоматического построения рекомендаций пользователям для отметки в системе переводных версий статей.
Ключевые слова: библиографические данные, анализ графов, перевод, статья, статистика, наукометрия, цитирование, автоматизированные системы.

Определение тематической близости научных журналов и конференций с использованием анализа графа соавторства

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
514-525
Аннотация: Количество публикуемых в мире журналов очень велико. В этой связи, необходим программный инструментарий, который позволит анализировать тематические связи журналов. Разработанный авторами и представленный в этой работе алгоритм использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В разработанном для этих целей интерфейсе пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.
Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Использование методов тематического анализа в наукометрических системах

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
315-338
Аннотация:

Во многих современных наукометрических системах и системах цитирования представлены различные механизмы тематического поиска и тематической фильтрации информации. В большинстве случаев для тематического анализа статей и журналов используется полнотекстовый подход, который имеет ряд ограничений. Использование алгоритмов, основанных на анализе графов как автономно, так и совместно с полнотекстовыми алгоритмами, позволяет устранить эти ограничения и улучшить полноту и точность тематического поиска. Алгоритм, разработанный авторами и представленный в этой работе, использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В интерфейсе, разработанном для этих целей, пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.

Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Об одном методе детектирования искусственных и ненаучных текстов в обширной коллекции документов

Олег Юрьевич Бахтеев, Маргарита Валерьевна Кузнецова, Алексей Владимирович Романов, Юрий Викторович Чехович
298-304
Аннотация: Работа посвящена описанию метода детектирования искусственных и ненаучных текстов в коллекции научных статей. Предлагаемый метод основан на лексическом и морфологическом анализе проверяемого документа, позволяющем оценить вероятность его принадлежности к классу научных документов. Эксперименты подтверждают возможность практического применения метода.
Ключевые слова: обработка естественного языка, классификация документов, анализ текстов, статистические языковые модели, детектирование искусственных текстов.
1 - 17 из 17 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества