• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Развитие цифровой е-Инфраструктуры непрерывного доступа к научным ресурсам: формирование банка спектральных данных ДЗЗ

М.А. Попов, Е.Б. Кудашев, С.П. Ковальчук, С.А. Пикулик, С.А. Станкевич, С.Ю. Марков
Аннотация: При изучении природных и искусственных объектов с помощью спутниковых технологий важную роль играют спектральные данные, которые несут информацию о распределении отражающих/излучающих свойств физических объектов и материалов по длинам волн. Необходимо отметить, что оперативное получение необходимых спектральных данных из названных выше источников обычно является проблемой. В работе описан подход к построению банка спектральных данных с расширенными функциональными возможностями, позволяющими реализовывать не только справочно-поисковые процедуры, но и достаточно широкий круг расчетно-прикладных процедур относительно спектральных данных и их атрибутов. На основе системного анализа предметной области и реляционной модели предложена схема БД, реализованная средствами MS Access. Обоснована организационная структура БСД. Предложена простая схема интеграции БСД в е-Инфраструктуру непрерывного доступа к научным ресурсам ДЗЗ.
Ключевые слова: электронные библиотеки, спутниковые технологии, спектральные данные, цифровая инфраструктура непрерывного доступа, дистанционное зондирование Земли.

Онтология вспомогательных и политематических предметных классов единого цифрового пространства научных знаний

Светлана Александровна Власова, Николай Евгеньевич Каленов, Александр Николаевич Сотников
22-42
Аннотация:

Одними из основных компонентов Единого Цифрового Пространства Научных Знаний (ЕЦПНЗ) являются предметные онтологии отдельных тематических подпространств, включающие в себя основные понятия, относящиеся к данному научному направлению. Задача построения предметных онтологий на первом этапе требует формирования массива ключевых терминов в заданной области науки с последующим установлением связей между ними. Настоящая работа является развитием исследований, проводимых авторами в области создания ЕЦПНЗ. В рамках предыдущих исследований была предложена унифицированная структура представления онтологии элементов ЕЦПНЗ (подпространств, классов и атрибутов объектов, связей между объектами или атрибутами). В процессе моделирования онтологии на примере универсального и ряда тематических подпространств ЕЦПНЗ выявилась необходимость некоторой корректировки структуры онтологии, касающейся справочников ЕЦПНЗ, для обеспечения возможности описания вложенных атрибутов данных. Кроме того, в онтологию введено понятие «тип словаря значений атрибутов данных», определены два типа словарей – «статические» и «динамические». Эта информация позволяет упростить алгоритмы формально-логического контроля при формировании контента ЕЦПНЗ. Указание на тип словаря введено в структуру справочников атрибутов объектов. В представленной работе описана модифицированная структура онтологии на примере 11-ти вспомогательных и 10-ти предметных классов универсального подпространства (УПП) ЕЦПНЗ. Приведены примеры справочников каждого класса, построенные в соответствии с моделью структуры онтологии, перечень атрибутов объектов и примеры статических словарей.

Ключевые слова: цифровое пространство научных знаний, онтология, классы объектов, атрибуты, структуризация, связанные данные.

Увеличение робастности нейронных сетей за счет генерации векторных представлений, инвариантных к атрибутам

Марат Рушанович Газизов, Карен Альбертович Григорян
1142-1154
Аннотация:

Робастность модели к незначительным отклонениям в распределении исходных данных является важным критерием во многих задачах. Нейронные сети могут показывать высокую точность (accuracy) на обучающей выборке, но при этом качество на тестовой выборке может сильно падать из-за разного распределения данных, причем ситуация только усугубляется на уровне подгрупп внутри каждой категории.


В данной статье мы показываем, как робастность модели на уровне подгрупп может быть значительно улучшена с помощью подхода, основанного на доменной адаптации векторных представлений. Мы обнаружили, что применение состязательного подхода к ограничению векторных представлений дает существенный прирост метрики точности (accuracy) в сложной подгруппе по сравнению с предыдущими моделями. Метод протестирован на двух независимых наборах данных, точность в сложной подгруппе на наборе данных Waterbirds составляет 90.3 {y : waterbirds;a : landbackground}, а на наборе данных CelebA – 92.22 {y : blondhair;a : male}.

Ключевые слова: робастная классификация, классификация изображений, генеративно-состязатель сети, доменная адаптация.

Информационная система регистрации результатов интеллектуальной деятельности сотрудников научного учреждения

Светлана Александровна Власова, Николай Евгеньевич Калёнов
218-237
Аннотация:

Представлена разработанная авторами объектно-ориентированная веб-система, предназначенная для формирования метаданных, описывающих результаты научной деятельности сотрудников учреждения (группы учреждений), и предоставления различных справочно-статистических данных о публикациях и докладах, сделанных ими на научных конференциях, симпозиумах, семинарах. Система ориентирована на работу с объектами таких связанных между собой классов, как «автор», «организация», «публикация», «доклад», «мероприятие». Профиль метаданных объектов каждого класса включает атрибуты, необходимые для получение развернутой информации как об отдельном объекте данного класса, так и о группе объектов, связанных заданными значениями атрибутов объектов других классов (например, перечень статей сотрудников заданного подразделения данной организации, опубликованных в заданном журнале за заданный промежуток времени). Отличительной особенностью системы является введенное понятие «эквивалентных» объектов. Эквивалентными считаются объекты, представленные в системе различными метаданными, но относящимися к одной физической сущности. Такими объектами являются «персоны», соответствующие одному автору с различными написаниями фамилии в библиографических описаниях публикаций; организации, имеющие различные варианты названий; статьи, опубликованные без изменений на различных языках. Подробно охарактеризованы возможности системы, ее пользовательский интерфейс, приведены примеры выполнения конкретных запросов.

Ключевые слова: базы данных, учет результатов научной деятельности, веб-ориентированная система, сетевые технологии, анализ публикационной активности, программное обеспечение.

Проект NewsAgent for Libraries: Персонифицированная служба оперативного информационного обеспечения

Р. Йетс
Аннотация: There are three main ways of obtaining information: searching, browsing and alerting. The first two are being widely developed by libraries using the Web, but the last has been somewhat neglected. The NewsAgent for Libraries project was originally funded under the eLib Programme by JISC (Joint Information Systems Committee of the UK higher education funding councils) as a two-year collaborative project started in April 1996.
Several small publishers of library and information science journals worked with network specialists, market evaluators and commercial software developers to design an open, distributed architecture for disseminating information via email and personalised Web pages. Dublin Core metadata was used, enhanced by NewsAgent specific keywords, to map stored user subject profiles against information feeds. Metadata was harvested using software robots to build an Oracle database where both user profiles and document attributes were stored.
Users can join the service via a Web page, to receive information updates by email or as a personalised Web page. Users can select predefined Topics in which they are interested, or create new named ones (stored queries). They can also modify existing Topics. Topics are presented in groups, called Channels.
A major part of the project was an extensive study of the potential end users of the service, before and after a prototype service was created. The project was considered a success, although further development of both software and marketing strategy were needed before a full scale launch could be planned. This is now expected in autumn 1999. In addition to this service, the software is being applied to other services by different organisations, targetted at groups such as small businesses, medical information and environmental information. It is expected that a commercial software package will be available from Fretwell-Downing Informatics as a result of the project.

Унифицированное представление онтологии единого цифрового пространства научных знаний

Николай Евгеньевич Каленов, Александр Николаевич Сотников
80-103
Аннотация:

Единое цифровое пространство научных знаний (ЕЦПНЗ) представляет собой цифровую информационную среду, агрегирующую разнородную информацию, связанную с различными аспектами научных знаний. Одной из важных функций ЕЦПНЗ является предоставление информации для решения задач искусственного интеллекта, что обусловливает необходимость поддержки данных в структуре, соответствующей правилам Semantic Web. Особенностями ЕЦПНЗ являются, с одной стороны, политематичность и разнородность элементов контента, с другой – высокая динамика появления новых видов объектов и связей между ними, что обусловлено спецификой развития науки. При реализации ЕЦПНЗ должна быть обеспечена возможность навигации по разнородным ресурсам пространства с использованием семантических связей между ними. Возможности ЕЦПНЗ в значительной мере определяются структурой онтологии пространства, модель которой предложена в данной работе. В рамках модели проведена иерархическая структуризация онтологии ЕЦПНЗ; выделены и определены такие элементы, как «подпространство», «класс объектов», «объект», «атрибуты объекта», три типа попарных связей объектов и атрибутов (универсальные, квазиуниверсальные и специфические). Структура каждого типа элементов определяется «справочником» унифицированного вида; конкретные значения атрибутов и связей содержатся в словарях унифицированной структуры. Выделен класс объектов «Форматы», описывающих правила формирования атрибутов и значений связей. Предложена формализация представлений справочников и словарей ЕЦПНЗ. Предлагаемая модель позволяет достаточно просто добавлять в пространство, по мере необходимости, новые виды объектов, их попарных связей и атрибутов.

Ключевые слова: цифровое пространство научных знаний, онтологии, структуризация, связанные данные, атрибуты данных, семантический WEB.

Как эмбеддинги имен сущностей влияют на качество выравнивания сущностей

Даниил Иванович Гусев, Зинаида Владимировна Апанович
52-79
Аннотация:

Алгоритмы установления соответствия между сущностями осуществляют поиск эквивалентных сущностей в разноязычных графах знаний. Данная проблема возникает, как правило, при интеграции разноязычных графов знаний. В настоящее время решение этой проблемы становится весьма актуальным для практического решения проблем импортозамещения, например, чтобы найти информацию о лекарствах, выпускаемых в разных странах под разными названиями, или же решить проблему поиска эквивалентных запчастей.


В настоящее время известно несколько библиотек с открытым кодом, которые объединяют известные алгоритмы выравнивания сущностей, а также тестовые наборы данных для различных языков. В данной работе описан русско-английский набор данных для экспериментов с нескольким популярными алгоритмами выравнивания сущностей. Особое внимание уделено методам генерации векторных представлений для имен сущностей. В частности, рассмотрены комбинации различных методов генерации векторных представлений (эмбеддингов) имен сущностей с известными алгоритмами выравнивания сущностей. Таблицы с результатами экспериментов дополнены визуализациями. 

Ключевые слова: разноязычные графы знаний, идентификация сущностей, cross-lingual entity alignment, knowledge graphs, relational embeddings, name embeddings.

Учёт структуры документа в методе автоматического аннотирования математических понятий в образовательных текстах

Константин Сергеевич Николаев
558-577
Аннотация:

Обогащение образовательных текстов семантическим содержимым (в частности, дополнение документа гиперссылками на страницы сервиса, отображающего подробную информацию о понятиях, используемых в тексте) способствует повышению эффективности усвоения материала обучающимися. Существующие методы семантической разметки образовательных текстов не учитывают структурные особенности таких документов, что приводит к избыточному распознаванию понятий.


В статье описано развитие метода автоматического аннотирования математических понятий в образовательных математических текстах путем добавления функционала для учета структуры образовательного документа. Основное назначение метода заключается в обработке образовательных материалов курса дистанционного образования «Технология решения планиметрических задач». Соблюдение единого шаблона при создании страниц курса позволяет применить анализ веб-разметки страниц и ключевых слов, примененных создателями курса. Основной задачей в данном процессе является определение типа ячеек таблицы, в которых находятся текстовые фрагменты образовательных материалов. В соответствии с рекомендациями создателей курса, определения необходимо выделять в ячейках, содержащих постановку задачи, а также в тех блоках, где указаны входные данные задачи. Определение типа ячеек таблиц производится с помощью анализа их атрибутов и поиска ключевых слов в их содержимом. Такое ограничение распознаваемых фрагментов текста позволяет улучшить восприятие страниц курса учеником и повысить качество усвоения учебного материала.

Ключевые слова: семантический анализ, математическая онтология, дидактические отношения, математическое образование, разметка документа.
1 - 8 из 8 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества