• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

О некоторых свойствах графов сотрудничества учёных в Math-Net.ru

Андрей Анатольевич Печников, Дмитрий Евгеньевич Чебуков
184-196
Аннотация:

Проведено исследование двух графов научного сотрудничества, построенных на основе соавторства и цитирования по данным Общероссийского математического портала Math-Net.Ru. Граф научного сотрудничества на основе цитирования представляет собой ориентированный граф без петель и кратных ребер, вершинами которого являются авторы публикаций, а дуги связывают их, когда имеется хотя бы одна публикация первого автора, цитирующая публикацию второго автора. Граф соавторства – это неориентированный граф, в котором вершинами являются авторы, а ребра фиксируют соавторство двух авторов хотя бы в одной статье. Проводится традиционное исследование основных характеристик обоих графов: диаметр и среднее расстояние, компоненты связности и кластеризация. В обоих графах мы наблюдаем схожую структуру связности – наличие гигантской компоненты и большое количество маленьких компонент. Отмечается сходство и различие научного сотрудничества через соавторство и цитирование.

Ключевые слова: научное сотрудничество, цитирование, соавторство, граф, математический портал Math-Net.Ru.

Использование графа соавторства для тематического поиска конференций по наукометрическим данным

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
600-615
Аннотация:

Применение современных методов тематического анализа для аналитической обработки больших объемов информации используется в настоящие время практически во всех сферах человеческой деятельности, в том числе, в наукометрии. Многие наукометрические системы и системы цитирования, включая всемирно известные WoS, Scopus, Google Shcolar, разрабатывают тематические рубрикаторы для поиска и обработки информации. Важными практическими задачами, которые могут решаться с применением методов тематической классификации, являются: оценка динамики развития тематических направлений в организации, в отдельной стране и мировой науке в целом; поиск статей по заданной тематике; поиск и оценка авторитетности экспертов; поиск журналов для публикации и другие актуальные задачи. Авторами созданы программные реализации алгоритмов для решения некоторых из перечисленных задач и ведутся научные исследования с целью создания новых эффективных математических моделей и алгоритмов в этой области.

Ключевые слова: тематический поиск, библиографические данные, поиск конференций, граф соавторства, информационные системы, наукометрия.

Использование методов тематического анализа в наукометрических системах

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
315-338
Аннотация:

Во многих современных наукометрических системах и системах цитирования представлены различные механизмы тематического поиска и тематической фильтрации информации. В большинстве случаев для тематического анализа статей и журналов используется полнотекстовый подход, который имеет ряд ограничений. Использование алгоритмов, основанных на анализе графов как автономно, так и совместно с полнотекстовыми алгоритмами, позволяет устранить эти ограничения и улучшить полноту и точность тематического поиска. Алгоритм, разработанный авторами и представленный в этой работе, использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В интерфейсе, разработанном для этих целей, пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.

Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Использование матриц смежности для визуализации больших графов

Зинаида Владимировна Апанович
2-36
Аннотация: Экспоненциальный рост размеров таких графов, как социальные сети, интернет-графы и др., требует новых подходов к их визуализации. Наряду с представлениями типа «диаграммы связей вершин» все чаще используются визуализации матриц смежностей, а также разнообразные комбинации этих представлений. В данном обзоре рассмотрены новые подходы к визуализации графов большого объема при помощи матриц смежностей и приведены примеры приложений, где эти подходы применяются. Описаны различные типы шаблонов, возникающие при упорядочении матриц смежностей, соответствующих современным сетям, и алгоритмы, позволяющие выделять эти шаблоны. В частности, продемонстрировано, как использование методов упорядочения матриц совместно с алгоритмами поиска таких шаблонов, как звезды, ложные звезды, цепи, почти клики, полные клики, двудольные ядра и почти двудольные ядра, позволяют создавать понятные визуализации графов, имеющих миллионы вершин и ребер. Также приведены примеры гибридных визуализаций, использующих диаграммы связей вершин для представления неплотных частей графа, а матрицы смежностей – для представления плотных частей и их приложений. Гибридные методы используются для визуализации сетей соавторства, глубоких нейронных сетей, сравнения сетей связности человеческого мозга и др.
Ключевые слова: графы большого объема, визуализация, матрицы смежности, жгуты ребер, гибридная визуализация.

Методы и средства визуализации сетей соавторства и сетей цитирования больших научных порталов

З.В. Апанович, П.С. Винокуров
Аннотация: Благодаря быстрому развитию направления Semantic Web и его новой ветви Linked Open Data, в Интернете становятся доступными большие объемы структурированной информации, размещенной на научных порталах, посвященных различным научным направлениям. Наиболее достоверным источником информации, посвященной любому научному направлению, являются собственно научные публикации, составляющие основное наполнение таких порталов. Эти данные нуждаются в средствах анализа, которые могли бы способствовать упрощению их понимания и оптимизации научного менеджмента. В данной работе описываются новые алгоритмы визуализации графов, реализованные в ИСИ СО РАН, и демонстрируется применение этих алгоритмов для визуализации сетей соавторства и сетей цитирования, извлеченных из научных порталов, входящих в облако Linked Open Data.
Ключевые слова: онтология, информационное наполнение, методы визуализации информации, силовой алгоритм, радиальный алгоритм, иерархические жгуты ребер, поуровневое изображение ориентированного графа, сети цитирования, Open Linked Data.

Определение тематической близости научных журналов и конференций с использованием анализа графа соавторства

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
514-525
Аннотация: Количество публикуемых в мире журналов очень велико. В этой связи, необходим программный инструментарий, который позволит анализировать тематические связи журналов. Разработанный авторами и представленный в этой работе алгоритм использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В разработанном для этих целей интерфейсе пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.
Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.
1 - 6 из 6 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества