• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Проектирование интегрированных заданий при обучении компьютерному моделированию

Ольга Александровна Широкова , Татьяна Юрьевна Гайнутдинова
378-393
Аннотация:

Рассмотрено возможное использование LMS Moodle при разработке курса «Использование компьютерного моделирования в образовании». Курс основан на внедрении в учебный процесс междисциплинарной интеграции высшей математики, компьютерного моделирования, программирования и предполагает использование систем компьютерной математики и программных сред. Представлены примеры конкретных интегрированных заданий.


При проектировании учебного курса «Использование компьютерного моделирования в образовании» в LMS Moodle использован следующий набор элементов: «лекция», «задание», «тест», «форум», «ресурс», «wiki», «чат», «глоссарий».


Использование методики составления интегрированных заданий на базе LMS Moodle показало, что: интегрированные задания с использованием информационных технологий способствуют повышению уровня усвоения материала сложных разделов высшей математики; содержание курса высшей математики является фундаментальной основой материала, изучаемого в предлагаемом курсе, и способствует глубокому пониманию математических дисциплин; интегрированные проектные задания формируют практические умения и навыки компьютерного моделирования с использованием программирования в различных программных средах.

Ключевые слова: интегрированные задания, высшая математика, компьютерное моделирование, программирование, LMS Moodle, системы компьютерной математики.

Исследование квантования больших языковых моделей: оценка эффективности с акцентом на русскоязычные задачи

Дмитрий Романович Пойманов, Михаил Сергеевич Шутов
1138-1163
Аннотация:

Квантование стало ключевой техникой сжатия и ускорения больших языковых моделей (LLM). Несмотря на то, что исследования низкобитного квантования активно развиваются применительно к англоязычным LLM, его влияние на морфологически богатые и разнородные по ресурсам языки, включая русский, остается изученным значительно хуже. Поэтому требуются дополнительные исследования этого вопроса в связи с развитием высокоэффективных русскоязычных и многоязычных LLM.


Мы провели систематическое исследование квантования предобученных моделей в эффективные 2.0—4.25 бита на параметр для современных русскоязычных LLM различного масштаба от 4 до 32 млрд параметров (4 B и 32 B). Экспериментальная часть охватывает как стандартное равномерное квантование, так и специализированные низкобитные форматы. Полученные результаты выявили несколько ключевых тенденций: i) устойчивость русскоязычных LLM к квантованию варьируется в зависимости от архитектуры и размера модели; ii) 4-битное квантование демонстрирует высокую надежность, особенно при использовании продвинутых форматов; iii) 3-битное и 2-битное квантования оказались наиболее чувствительными к указанным калибровки. Полученные эмпирические данные демонстрируют необходимость учета домена модели при использовании различных методов квантования.

Ключевые слова: квантование нейросетей, сжатие и оптимизация больших языковых моделей.

Нормализация текста, распознанного при помощи технологии оптического распознавания символов, с использованием легковесных LLM

Владислав Константинович Вершинин, Иван Владимирович Ходненко, Сергей Владимирович Иванов
1036-1056
Аннотация:

Несмотря на значительный прогресс, технологии оптического распознавания символов (OCR) для исторических газет по-прежнему допускают 5–10% ошибок на уровне символов. В работе представлена полностью автоматизированная система нормализации пост-OCR, объединяющая легкие языковые модели (LLM) объемом 7–8 млрд параметров, обученные по инструкциям и квантизованные до 4 бит (INT4), с небольшим набором регулярных выражений. На наборе данных BLN600 (600 страниц британских газет XIX в.) лучшая модель YandexGPT-5-Instruct Q4 снижает Character Error Rate (CER) с 8.4% до 4.0% (–52.5%) и Word Error Rate (WER) с 20.2% до 6.5% (–67.8%), повышая при этом семантическое сходство до 0.962. Система работает на потребительском оборудовании (RTX-4060 Ti, 8 ГБ VRAM) со скоростью около 35 секунд на страницу и не требует дополнительного обучения или параллельных данных. Полученные результаты показывают, что компактные INT4-LLM являются практичной альтернативой крупным моделям для постобработки OCR исторических документов.

Ключевые слова: оптическое распознавание символов, пост-OCR-коррекция, исторические газеты, большие языковые модели, квантизация, INT4, конвейер нормализации, ошибка на уровне символов, семантическое сходство, регулярные выражения, YandexGPT-5, легкие модели, обработка естественного языка, цифровые гуманитарные науки, оцифровка документов.

Инструменты поддержки ролевых заданий по стратегии STAD в обучающей системе

Владислав Владимирович Матюнин, Антон Алексадрович Марченко
209-221
Аннотация:

Представлена одна из возможных реализаций модели совместного обучения по ролям, основанной на стратегии STAD (Student Teams-achievement Divisions) кооперативного обучения в LMS (Learning Management System, Система управления обучением). Подходы, описанные в данной образовательной методике, развивают у обучающихся навыки командной работы, необходимые в профессиональной деятельности, а их внедрение в систему обучения позволит автоматизировать и оптимизировать некоторые процессы и открыть новые возможности для реализации новых инструментов.

Ключевые слова: кооперативное обучение, STAD, LMS, обучающие системы.

Нейросетевая архитектура воплощенного интеллекта

Айрат Рафкатович Нурутдинов
598-655
Аннотация:

В последние годы достижения в области искусственного интеллекта (ИИ) и машинного обучения обусловлены успехами в разработке больших языковых моделей (LLM) на основе глубоких нейронных сетей. В то же время, несмотря на существенные возможности, LLM имеет такие принципиальные ограничения, как спонтанная недостоверность в фактах и суждениях; допущение простых ошибок, диссонирующих с высокой компетентностью в целом; легковерие, проявляющееся в готовности принимать за истину заведомо ложные утверждения пользователя; отсутствие сведений о событиях, произошедших после завершения обучения.


Вероятно, ключевой причиной является то, что обучение биологического интеллекта происходит через усвоение неявных знаний воплощенной формой интеллекта, позволяющей решать интерактивные физические задачи реального мира. Биоинспирированные исследования нервных систем организмов позволяют рассматривать мозжечок, координирующий движения и поддерживающий равновесие, в качестве главного кандидата для раскрытия методов реализации воплощенного физического интеллекта. Его простая повторяющаяся структура и способность управлять сложными движениями дают надежду на возможность создания аналога адаптивным нейронным сетям.


В настоящей работе изучается биоинспирированная архитектура мозжечка как форма аналоговых вычислительных сетей, способная моделировать сложные физические системы реального мира. В качестве простого примера представлена реализация воплощенного ИИ в виде многокомпонентной модели щупальца осьминога, демонстрирующей потенциал в создании адаптивных физических систем, обучающихся и взаимодействующих с окружающей средой.

Ключевые слова: Искусственные нейронный сети, большие языковые модели, неявное обучение, мозжечок, аналоговые компьютеры, воплощенный интеллект, мягкие роботы, осьминоги.

Сокрытие в смысле: семантическое кодирование для генеративно-текстовой стеганографии

Олег Юрьевич Рогов, Дмитрий Евгеньевич Инденбом, Дмитрий Сергеевич Корж, Дарья Валерьевна Пугачёва, Всеволод Александрович Воронов, Елена Викторовна Тутубалина
1165-1185
Аннотация:

В статье предложена новая система для генерации стеганографического текста, скрывающая двоичные сообщения в семантически связном естественном языке с помощью скрытого пространства, обусловливающего большие языковые модели (LLM). Секретные сообщения сначала кодируются в непрерывные векторы с помощью обученного отображения двоичного кода в скрытое пространство, которое используется для управления генерацией текста посредством донастройки префикса. В отличие от предыдущих методов стеганографии на уровне токенов или синтаксиса, наш метод позволяет избежать явной манипуляции словами и вместо этого работает полностью в скрытом семантическом пространстве, что обеспечивает более плавные и менее заметные результаты. На стороне получателя скрытое представление восстанавливается из сгенерированного текста и декодируется обратно в исходное сообщение.
В качестве ключевого теоретического вклада мы предоставляем гарантию надежности: если восстановленный скрытый вектор находится в пределах ограниченного расстояния от изначального, обеспечивается точное восстановление сообщения, причем граница определяется константой Липшица декодера и минимальным отступом логитов. Этот формальный результат предлагает принципиальный подход к компромиссу между надежностью и емкостью в скрытых стеганографических системах. Эмпирическая оценка как на синтетических данных, так и в практических предметных областях, таких как отзывы на Amazon, показывает, что наш метод достигает высокой точности восстановления сообщений (выше 91%), высокую плавность текста и конкурентоспособную емкость до 6 бит на элемент предложения, сохраняя при этом устойчивость к нейронному стегоанализу. Эти результаты демонстрируют, что генерация со скрытым условием предлагает безопасный и практичный путь для встраивания информации в современные LLM.

Ключевые слова: стеганография, семантическое кодирование, языковые модели, донастройка префиксов, граф знаний, генерация естественного языка, скрытое обусловливание, нейронный стегоанализ.

Оценка неопределенности в трансформерных цепях на основе принципа согласованности эффективной информации

Анатолий Анатольевич Красновский
1103-1119
Аннотация:

Механистическая интерпретируемость позволяет выявлять функциональные подграфы в больших языковых моделях (LLM), известные как трансформерные цепи (Transformer Circuits, TC), которые реализуют конкретные алгоритмы. Однако отсутствует формальный способ, позволяющий за один проход количественно оценить, когда активная цепь ведет себя согласованно и, следовательно, ее состояние может быть признано корректным. Опираясь на ранее предложенную автором пучково‑теоретическую формализацию причинной эмерджентности (Krasnovsky, 2025), мы специализируем ее для трансформерных цепей и вводим безразмерную однопроходную оценку согласованности эффективной информации (Effective Information Consistency Score, EICS). EICS сочетает нормализованную несогласованность пучка, вычисляемую из локальных якобианов и активаций, с гауссовским прокси EI для причинной эмерджентности на уровне цепи, полученным из того же состояния прямого прохода. Такая конструкция является прозрачной (white‑box), однопроходной и делает единицы измерения явными, так что оценка безразмерна. Представлены практические рекомендации по интерпретации оценки, учету вычислительных затрат (с быстрыми и точными режимами) и анализ простейшего примера для проверки на адекватность.

Ключевые слова: механистическая интерпретируемость, трансформерные цепи, теория пучков, причинная эмерджентность, количественная оценка неопределенности, большие языковые модели (LLM).

Разработка адаптивной системы генерации игровых квестов и диалогов на основе больших языковых моделей

Всеволод Тарасович Трофимчук, Влада Владимировна Кугуракова
953-993
Аннотация:

Рассмотрена проблема создания динамических нарративных систем для видеоигр с интерактивностью в реальном времени. Представлены разработка и тестирование компонента интеграции GPT для генерации диалогов, выявившие критическое ограничение облачных решений – задержку в 30 с., неприемлемую для игрового процесса. Предложена гибридная архитектура адаптивной системы, сочетающая LLM с механизмами обучения с подкреплением. Особое внимание уделяется решению проблем консистентности игрового мира и управлению долгосрочным контекстом взаимодействий с NPC через RAG-подход. Обоснован переход к парадигме Edge AI с применением методов квантования для достижения целевой задержки 200–500 мс. Разработаны метрики оценки персонализации и динамической адаптации контента.

Ключевые слова: видеоигры, большие языковые модели, LLM, генерация диалогов, диалогогенерация, генерация квестов, квестогенерация, адаптивные квесты, процедурная генерация контента, агентное поведение, игровой искусственный интеллект, машинное обучение в играх.

Искусственный интеллект в решении проблемы онкопрофилактики: ретроспективное исследование

Петр Александрович Филоненко, Владимир Николаевич Кох, Павел Дмитриевич Блинов
1253-1266
Аннотация:

Исследована возможность эффективного решения задачи популяционной онкопрофилактики с помощью методов искусственного интеллекта (ИИ), прогнозирующих риск злокачественных новообразований (ЗНО) на основе минимального набора данных из электронной медицинской карты (ЭМК) – кодов медицинских диагнозов и услуг. Для решения поставленной задачи рассмотрен широкий спектр современных подходов, включающих методы классического машинного обучения, анализа выживаемости, глубокого обучения и больших языковых моделей (LLM). Численные эксперименты показали, что наилучшей способностью ранжирования пациентов по уровню риска ЗНО обладает градиентный бустинг, использующий модели анализа выживаемости в качестве дополнительных предикторов, что позволяет учитывать как популяционные, так и индивидуальные факторы риска ЗНО. Из данных ЭМК были сконструированы предикторы, включающие демографические характеристики, паттерны обращений за медицинской помощью и клинические маркеры. Это решение было протестировано в ретроспективных экспериментах под контролем профильных врачей-онкологов. В ретроспективном эксперименте с участием более 1.9 млн пациентов установлено, что в группу риска попадает до 5.4 раза больше пациентов с ЗНО при том же уровне медицинских обследований. Предложенный метод представляет собой масштабируемое решение, использующее исключительно коды диагнозов и услуг, не требующее специализированной инфраструктуры и интегрируемое в процесс онконастороженности, что делает его применимым для решения задач популяционной онкопрофилактики.

Ключевые слова: ИИ в медицине, популяционная онкопрофилактика, ретроспективные эксперименты.

Общедоступные архивы данных наземного радиозондирования ионосферы коротковолновыми сигналами

Андрей Олегович Щирый, Алина Александровна Писаренко
992-1005
Аннотация:

По данным радиозондирования ионосферы коротковолновыми сигналами можно получить информацию о процессах в ионосферной плазме, ее структуре и состоянии; эти данные также крайне важны для радиотехнических систем, работающих в коротковолновом диапазоне. К настоящему моменту накоплен большой объем экспериментальных данных для различных гео- и гелиофизических, пространственных и временных условий. Интерес к большим массивам данных радиозондирования ионосферы мотивирован также возможностью построения статистических моделей методами машинного обучения. В работе представлены некоторые интернет-ресурсы с данными радиозондирования ионосферы, показаны перспективы их применения, а также обозначены некоторые проблемы, такие как недостаточная документированность части форматов данных и представление ионограмм только в виде растровых изображений, существенная часть из которых к тому же отсканирована с фотопленок.

Ключевые слова: ионосфера, распространение радиоволн, радиозондирование, вертикальное зондирование ионосферы, ионограмма, обработка ионограмм.
1 - 10 из 10 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества