• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Нейросетевая архитектура воплощенного интеллекта

Айрат Рафкатович Нурутдинов
598-655
Аннотация:

В последние годы достижения в области искусственного интеллекта (ИИ) и машинного обучения обусловлены успехами в разработке больших языковых моделей (LLM) на основе глубоких нейронных сетей. В то же время, несмотря на существенные возможности, LLM имеет такие принципиальные ограничения, как спонтанная недостоверность в фактах и суждениях; допущение простых ошибок, диссонирующих с высокой компетентностью в целом; легковерие, проявляющееся в готовности принимать за истину заведомо ложные утверждения пользователя; отсутствие сведений о событиях, произошедших после завершения обучения.


Вероятно, ключевой причиной является то, что обучение биологического интеллекта происходит через усвоение неявных знаний воплощенной формой интеллекта, позволяющей решать интерактивные физические задачи реального мира. Биоинспирированные исследования нервных систем организмов позволяют рассматривать мозжечок, координирующий движения и поддерживающий равновесие, в качестве главного кандидата для раскрытия методов реализации воплощенного физического интеллекта. Его простая повторяющаяся структура и способность управлять сложными движениями дают надежду на возможность создания аналога адаптивным нейронным сетям.


В настоящей работе изучается биоинспирированная архитектура мозжечка как форма аналоговых вычислительных сетей, способная моделировать сложные физические системы реального мира. В качестве простого примера представлена реализация воплощенного ИИ в виде многокомпонентной модели щупальца осьминога, демонстрирующей потенциал в создании адаптивных физических систем, обучающихся и взаимодействующих с окружающей средой.

Ключевые слова: Искусственные нейронный сети, большие языковые модели, неявное обучение, мозжечок, аналоговые компьютеры, воплощенный интеллект, мягкие роботы, осьминоги.

Разработка адаптивной системы генерации игровых квестов и диалогов на основе больших языковых моделей

Всеволод Тарасович Трофимчук, Влада Владимировна Кугуракова
953-993
Аннотация:

Рассмотрена проблема создания динамических нарративных систем для видеоигр с интерактивностью в реальном времени. Представлены разработка и тестирование компонента интеграции GPT для генерации диалогов, выявившие критическое ограничение облачных решений – задержку в 30 с., неприемлемую для игрового процесса. Предложена гибридная архитектура адаптивной системы, сочетающая LLM с механизмами обучения с подкреплением. Особое внимание уделяется решению проблем консистентности игрового мира и управлению долгосрочным контекстом взаимодействий с NPC через RAG-подход. Обоснован переход к парадигме Edge AI с применением методов квантования для достижения целевой задержки 200–500 мс. Разработаны метрики оценки персонализации и динамической адаптации контента.

Ключевые слова: видеоигры, большие языковые модели, LLM, генерация диалогов, диалогогенерация, генерация квестов, квестогенерация, адаптивные квесты, процедурная генерация контента, агентное поведение, игровой искусственный интеллект, машинное обучение в играх.

Цифровой помощник геолога-исследователя

Виталий Сергеевич Еременко, Вера Викторовна Наумова
781-787
Аннотация:

Представлены концепция и архитектура мультиагентной системы, предназначенной для функционирования в роли цифрового ассистента геолога-исследователя. Система нацелена на автоматизацию ключевых этапов научного исследования: от формулировки темы и анализа литературы до выдвижения гипотез и оформления результатов. Описана интеграция системы с платформой GeologyScience.ru, обеспечивающей доступ к разнородным геологическим данным и инструментам анализа, а также подходы к адаптации больших языковых моделей (LLM) для решения специализированных научных задач.

Ключевые слова: цифровой помощник геолога-исследователя, мультиагентная система, искусственный интеллект, LLM.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества