• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Рекомендательная система поиска экспертов для проведения научного рецензирования в математическом журнале

Александр Михайлович Елизаров, Евгений Константинович Липачёв, Шамиль Махмутович Хайдаров
708-732
Аннотация: Предложен подход к организации экспертной оценки научного документа, представленного для публикации в математический журнал. Ограничение предметной области связано с использованием системы математической классификации Mathematical Sciences Classification System – MSC. Представлена рекомендательная система, позволяющая сформировать список возможных экспертов для проведения процедуры научного рецензирования математической статьи. Эта рекомендательная система использует коды MSC2020, изначально представленные автором статьи. Если в статье указаны коды MSC2000 или MSC2010, производится их автоматическое преобразование в коды MSC2020. Для каждого эксперта в системе поддерживается персональный профиль, который содержит набор кодов MSC2020, дополненный числовыми характеристиками, – весами, вычисленными для каждого кода в соответствии с системой учета компетенций, предпочтений или отказов от участия в процедуре рецензирования, сформированных в процессе предыдущей работы в качестве эксперта. Этот набор автоматически редактируется в случае включения эксперта в список возможных рецензентов – повышаются или уменьшаются веса нескольких кодов, а также добавляются новые коды. Рекомендательная система реализована в виде встроенного инструмента (плагина) платформы Open Journal Systems (OJS). Разработанный метод апробирован в информационной системе научного журнала Lobachevskii Journal of Mathematics (https://ljm.kpfu.ru).
Ключевые слова: информационная система научного журнала, Open Journal Systems, рабочий процесс рецензирования, автоматический выбор рецензентов, Mathematics Subject Classification 2010, Lobachevskii Journal of Mathematics.

Цифровая экосистема OntoMath как подход к построению пространства математических знаний

Александр Михайлович Елизаров, Александр Витальевич Кириллович, Евгений Константинович Липачёв, Ольга Авенировна Невзорова
154–202
Аннотация:

Представлены результаты по созданию методов управления математическим знанием в контексте цифровых математических библиотек. Программные инструменты, разработанные на основе этих методов, являются частью цифровой экосистемы OntoMath, в рамках которой осуществляется их взаимодействие. Приведено краткое описание архитектуры экосистемы OntoMath, выделены уровни предметных онтологий и внешних онтологий, а также уровень программных инструментов и сервисов. В отдельную категорию выделены семантические сервисы. Этим термином обозначены программные инструменты, в функционале которых используются запросы к предметным онтологиям для обеспечения управления объектами знаний. Даны общие описания разрабатываемых предметных онтологий: образовательной математической онтологии OntoMathEdu и онтологии профессиональной математики OntoMathPRO. Отражено развитие образовательной онтологии в направлении включения образовательных пререквизитных связей между классами. Среди программных инструментов цифровой экосистемы выделены сервисы поиска по математическим электронным коллекциям, сервис семантического аннотирования математических документов, инструменты семантической разметки образовательных математических документов, а также система автоматической генерации проверочных тестов по математическим образовательным дисциплинам.


В рамках цифровой экосистемы OntoMath развиваются рекомендательные системы специального назначения. В текущей версии экосистемы представлены рекомендательная система формирования списка близких статей, основанная на онтологии OntoMathPRO, рекомендательная система назначения экспертов для поддержки процесса научного рецензирования и рекомендательные системы подбора предметных классификаторов УДК и кодов Mathematics Subject Classification для математических документов. Приведены также результаты, полученные в направлении создания фабрики метаданных цифровой библиотеки, включающей сервисы и инструменты извлечения, уточнения, пополнения и нормализации метаданных документов электронных математических коллекций. Отметим, что экосистема OntoMath разрабатывается как технологическая основа цифровой математической библиотеки Lobachevskii-DML.

Ключевые слова: цифровая экосистема, экосистема OntoMath, цифровая математическая библиотека, Lobachevskii-DML, онтология, математическая онтология OntoMathPRO, образовательная онтология OntoMathEdu.

Рекомендательная система подбора игроков в командных видах спорта, построенная на основе машинного обучения

Ринат Рустемович Шигапов, Александр Андреевич Ференец
257-280
Аннотация:

Описана разработка на основе машинного обучения рекомендательной системы подбора игроков на примере хоккея с возможностью расширения ее использования в различных командных видах спорта. Для каждого вида спорта рассмотрены амплуа и характеристики игроков, которые были структурированы и разделены на общие группы. Проанализирована информация о хоккее, футболе, баскетболе и волейболе. Для каждого из рассмотренных параметров выведены коэффициенты, показывающие их влияние на результат матча. Протестированы модели, построенные на основе различных алгоритмов машинного обучения. Создан веб-интерфейс приложения.

Ключевые слова: спорт, хоккей, подбор игроков, рекомендательная система, машинное обучение.

Рекомендательная система текстовой аналитики юридических документов

Денис Сергеевич Зуев, Марат Фаритович Насрутдинов, Айрат Фаридович Хасьянов
435-449
Аннотация:

Обсуждено использование механизмов машинного обучения, анализа естественного языка и интеллектуального поиска в области юриспруденции. Основные ожидаемые результаты – методология применения алгоритмов текстовой аналитики и семантического анализа естественного языка (NLP) в задачах управления знаниями в судебном делопроизводстве, а также других видах юридической практики. Полученные результаты могут быть применены в области образования и управления знаниями в более широком контексте, поскольку исследование лежит на стыке юриспруденции, математической и компьютерной лингвистики.

Описан прототип многоагентной системы интеллектуального анализа текстов в юриспруденции, способной на имеющейся базе данных судебных документов выявлять общие зависимости, предоставлять для ознакомления юридические дела, близкие по тематике, рекомендовать наиболее вероятные исходы судебного рассмотрения или помечать важные места, на которые следует обращать внимание при процессуальных действиях с использованием инструментов текстовой аналитики.
Ключевые слова: аналитика и управление данными, интенсивное использование данных, электронные библиотеки, кластеризация, классификация судебных актов, рекомендательная система, микросервисная архитектура.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества