• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Рекомендательная система поиска экспертов для проведения научного рецензирования в математическом журнале

Александр Михайлович Елизаров, Евгений Константинович Липачёв, Шамиль Махмутович Хайдаров
708-732
Аннотация: Предложен подход к организации экспертной оценки научного документа, представленного для публикации в математический журнал. Ограничение предметной области связано с использованием системы математической классификации Mathematical Sciences Classification System – MSC. Представлена рекомендательная система, позволяющая сформировать список возможных экспертов для проведения процедуры научного рецензирования математической статьи. Эта рекомендательная система использует коды MSC2020, изначально представленные автором статьи. Если в статье указаны коды MSC2000 или MSC2010, производится их автоматическое преобразование в коды MSC2020. Для каждого эксперта в системе поддерживается персональный профиль, который содержит набор кодов MSC2020, дополненный числовыми характеристиками, – весами, вычисленными для каждого кода в соответствии с системой учета компетенций, предпочтений или отказов от участия в процедуре рецензирования, сформированных в процессе предыдущей работы в качестве эксперта. Этот набор автоматически редактируется в случае включения эксперта в список возможных рецензентов – повышаются или уменьшаются веса нескольких кодов, а также добавляются новые коды. Рекомендательная система реализована в виде встроенного инструмента (плагина) платформы Open Journal Systems (OJS). Разработанный метод апробирован в информационной системе научного журнала Lobachevskii Journal of Mathematics (https://ljm.kpfu.ru).
Ключевые слова: информационная система научного журнала, Open Journal Systems, рабочий процесс рецензирования, автоматический выбор рецензентов, Mathematics Subject Classification 2010, Lobachevskii Journal of Mathematics.

Программный модуль формирования цифрового математического пространства на основе графов знаний

Вадим Игоревич Гурьянов, Александр Михайлович Елизаров
622-639
Аннотация:

Современное информационное пространство содержит множество данных, однако они зачастую слабо структурированы, трудно находимы и не всегда корректны. Это создаёт дополнительные трудности при исследованиях, поэтому в настоящее время формируются цифровые пространства научных знаний, в частности, на основе графов знаний.


Для обеспечения качества информации такие графы часто наполняются данными вручную, что требует больших затрат времени. Поэтому создание инструмента, предоставляющего возможность автоматического наполнения графа данными, а также обеспечивающего контроль их качества, позволит упростить и ускорить процесс формирования цифровых пространств научных знаний.


Предложены методы автоматизации наполнения графа данными, обеспечивающие параллельный контроль их целостности. На основе предложенных методов разработан программный модуль, описаны механизмы его функционирования и его архитектура.

Ключевые слова: цифровое пространство научных знаний, формирование цифровых пространств научных знаний, графы знаний, автоматизация построения графов знаний.

Нейросимволический подход к дополненной генерации текста на основе автоматизированной индукции морфотактических правил

Марат Вильданович Исангулов, Александр Михайлович Елизаров, Айгиз Ражапович Кунафин, Айрат Рафизович Гатиатуллин, Николай Аркадиевич Прокопьев
1085-1102
Аннотация:

Представлен гибридный нейросимволический метод, который объединяет большую языковую модель (LLM) и конечный автомат (FST) для обеспечения морфологической корректности при генерации текста на агглютинативных языках.
Система автоматически извлекает правила из корпусных данных: для локальных примеров словоформ LLM формирует цепочки морфологического разбора, которые затем агрегируются и упорядочиваются в компактные описания правил морфотактики (LEXC) и выбора алломорфов (regex). На этапе генерации LLM и FST работают совместно: если токен не распознается автоматом, LLM извлекает из контекста пару «лемма + теги», а FST реализует корректную поверхностную форму. В качестве набора данных использован корпус художественной литературы (~1600 предложений). Для списка из 50 существительных извлечено 250 словоформ. По предложенному алгоритму LLM сгенерировала 110 контекстных regex-правил вместе с LEXC-морфотактикой, на основе чего был скомпилирован FST, распознавший 170/250 форм (~70%). В прикладном тесте машинного перевода на подкорпусе из 300 предложений интеграция данного FST в цикл LLM повысила качество с BLEU 16.14 / ChrF 45.13 до BLEU 25.71 / ChrF 50.87 без дообучения переводчика. Подход применим к иным частям речи и другим агглютинативным и малоресурсным языкам, где он может быть использован для наполнения словарных и грамматических ресурсов.

Ключевые слова: нейросимволический подход, большая языковая модель, конечные автоматы, двухуровневая морфология, LEXC морфотактика, машинный перевод, агглютинативные языки, башкирский язык.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества