Исследование квантования больших языковых моделей: оценка эффективности с акцентом на русскоязычные задачи
Main Article Content
Аннотация
Квантование стало ключевой техникой сжатия и ускорения больших языковых моделей (LLM). Несмотря на то, что исследования низкобитного квантования активно развиваются применительно к англоязычным LLM, его влияние на морфологически богатые и разнородные по ресурсам языки, включая русский, остается изученным значительно хуже. Поэтому требуются дополнительные исследования этого вопроса в связи с развитием высокоэффективных русскоязычных и многоязычных LLM.
Мы провели систематическое исследование квантования предобученных моделей в эффективные 2.0—4.25 бита на параметр для современных русскоязычных LLM различного масштаба от 4 до 32 млрд параметров (4 B и 32 B). Экспериментальная часть охватывает как стандартное равномерное квантование, так и специализированные низкобитные форматы. Полученные результаты выявили несколько ключевых тенденций: i) устойчивость русскоязычных LLM к квантованию варьируется в зависимости от архитектуры и размера модели; ii) 4-битное квантование демонстрирует высокую надежность, особенно при использовании продвинутых форматов; iii) 3-битное и 2-битное квантования оказались наиболее чувствительными к указанным калибровки. Полученные эмпирические данные демонстрируют необходимость учета домена модели при использовании различных методов квантования.
Ключевые слова:
Article Details
Библиографические ссылки
2. Mendonça J., Lavie A., Trancoso I. On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation // Proceedings of the 6th Workshop on NLP for Conversational AI (NLP4ConvAI 2024). 2024. P. 1–12. https://doi.org/10.48550/arXiv.2407.03841
3. Liu J. et al. Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation //Advances in Neural Information Processing Systems. 2023. Vol. 36. P. 21558–21572. https://doi.org/10.48550/arXiv.2305.01210
4. Hendrycks D. et al. Measuring massive multitask language understanding, 2021 // International Conference on Learning Representations. 2021. https://doi.org/10.48550/arXiv.2009.03300
5. Clark P. et al. Think you have solved question answering? try arc, the ai2 reasoning challenge // arXiv preprint arXiv:1803.05457. 2018. https://doi.org/10.48550/arXiv.1803.05457
6. Zellers R. et al. HellaSwag: Can a Machine Really Finish Your Sentence? // Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019. P. 4791–4800. https://doi.org/10.48550/arXiv.1905.07830
7. Dettmers T. et al. Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale // Advances in neural information processing systems. 2022. Vol. 35, P. 30318–30332. https://doi.org/10.48550/arXiv.2208.07339
8. Frantar E. et al. OPTQ: Accurate post-training quantization for generative pre-trained transformers // 11th International Conference on Learning Representations. 2023. https://doi.org/10.48550/arXiv.2210.17323
9. Lin J. et al. Awq: Activation-aware weight quantization for on-device llm compression and acceleration // Proceedings of machine learning and systems. 2024. Vol. 6. P. 87–100. https://doi.org/10.1145/3714983.3714987
10. Xiao G. et al. Smoothquant: Accurate and efficient post-training quantization for large language models // International conference on machine learning. PMLR, 2023. P. 38087 –38099. https://doi.org/10.48550/arXiv.2211.10438
11. Tseng A. et al. Qtip: Quantization with trellises and incoherence processing // Advances in Neural Information Processing Systems. 2024. Vol. 37. P. 59597–59620. https://doi.org/10.48550/arXiv.2406.11235
12. T-Tech. T-pro-2.0. – Hybrid reasoning model based on Qwen3-32B // HuggingFace.co: The collaboration platform. 2025. URL: https://huggingface.co/t-tech/T-pro-it-2.0
13. Yandex company. YandexGPT // HuggingFace.co: The collaboration platform. 2025. URL: https://huggingface.co/yandex/YandexGPT-5-Lite-8B-instruct
14. Tikhomirov M., Chernyshev D. Facilitating large language model russian adaptation with learned embedding propagation // Journal of Language and Education. 2024. Vol. 10. No. 4 (40). P. 130–145. https://doi.org/10.48550/arXiv.2412.21140
15. Team Q. et al. Qwen2 technical report // arXiv preprint arXiv:2407.10671. 2024. Vol. 2. P. 3. https://doi.org/10.48550/arXiv.2407.10671
16. Agarwal S. et al. gpt-oss-120b & gpt-oss-20b Model Card // arXiv e-prints. 2025. P. arXiv: 2508.10925. https://doi.org/10.48550/arXiv.2508.10925
17. Liu A. et al. DeepSeek-V3 Technical Report // arXiv e-prints. 2024. P. arXiv: 2412.19437. https://doi.org/10.48550/arXiv.2412.19437
18. Chee J. et al. Quip: 2-bit quantization of large language models with guarantees // Advances in Neural Information Processing Systems. 2023. Vol. 36, P. 4396 –4429. https://doi.org/10.48550/arXiv.2307.13304
19. Chen M. et al. Efficientqat: Efficient quantization-aware training for large language models // Annual Meeting of the Association for Computational Linguistics. 2025. Vol. 1. P. 10081–10100. https://doi.org/10.48550/arXiv.2407.11062
20. Shao W. et al. OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models // The Twelfth International Conference on Learning Representations. 2024. https://doi.org/10.48550/arXiv.2308.13137
21. Hu E. J. et al. Lora: Low-rank adaptation of large language models // International Conference on Machine Learning. 2022. Vol. 1, No. 2. P. 3. https://doi.org/10.48550/arXiv.2106.09685
22. Han Z. et al. Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey // arXiv e-prints. 2024. P. arXiv: 2403.14608. https://doi.org/10.48550/arXiv.2403.14608
23. Egiazarian V. et al. Extreme compression of large language models via additive quantization // Proceedings of the 41st International Conference on Machine Learning. 2024. P. 12284–12303. https://doi.org/10.48550/arXiv.2401.06118
24. Tseng A. et al. QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks // International Conference on Machine Learning. PMLR, 2024. P. 48630–48656. https://doi.org/10.48550/arXiv.2402.04396
25. Tseng A. et al. Qtip: Quantization with trellises and incoherence processing // Advances in Neural Information Processing Systems. 2024. Vol. 37. P. 59597–59620. https://doi.org/10.48550/arXiv.2406.11235
26. Yang A. et al. Qwen3 technical report // arXiv e-prints. 2025. P. arXiv: 2505.09388. https://doi.org/10.48550/arXiv.2505.09388
27. Achiam J. et al. GPT-4 Technical Report // arXiv e-prints. 2023. arXiv: 2303.08774. https://doi.org/10.48550/arXiv.2303.08774
28. Darvish Rouhani B. et al. Microscaling data formats for deep learning // arXiv e-prints. 2023. P. arXiv: 2310.10537. https://doi.org/10.48550/arXiv.2310.10537
29. Weber M. et al. Redpajama: an open dataset for training large language models // Advances in neural information processing systems. 2024. Vol. 37. P. 116462–116492. https://doi.org/10.52202/079017-3697
30. Potapov A. T‑Wix – Russian supervised fine‑tuning (SFT) dataset // HuggingFace.co: The collaboration platform. 2025. URL: https://huggingface.co/datasets/t-tech/T-Wix
31. Merity S. et al. Pointer Sentinel Mixture Models // International Conference on Learning Representations. 2017. https://doi.org/10.48550/arXiv.1609.07843
32. Korablinov V., Braslavski P. RuBQ: A Russian dataset for question answering over Wikidata // International Semantic Web Conference. Cham: Springer International Publishing. 2020. P. 97–110. https://doi.org/10.1007/978-3-030-62466-8_7
33. Li H. et al. CMMLU: Measuring massive multitask language understanding in Chinese // Findings of the Association for Computational Linguistics. 2024. P. 11260–11285. https://doi.org/10.48550/arXiv.2306.09212
34. Bisk Y. et al. Piqa: Reasoning about physical commonsense in natural language // Proceedings of the AAAI conference on artificial intelligence. 2020. Vol. 34. №. 05. P. 7432–7439. https://doi.org/10.1609/aaai.v34i05.6239
35. Fenogenova A. et al. MERA: A Comprehensive LLM Evaluation in Russian //Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024. P. 9920–9948. https://doi.org/10.18653/v1/2024.acl-long.534
36. Chirkin A. et al. RusConText Benchmark: A Russian Language Evaluation Benchmark for Understanding Context // ACL 2025 Student Research Workshop. 2025. https://aclanthology.org/2025.acl-srw.91/
37. EleutherAI. Language Model Evaluation Harness // Zenodo. 2024. v0.4.3. https://zenodo.org/records/10256836

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Представляя статьи для публикации в журнале «Электронные библиотеки», авторы автоматически дают согласие предоставить ограниченную лицензию на использование материалов Казанскому (Приволжскому) федеральному университету (КФУ) (разумеется, лишь в том случае, если статья будет принята к публикации). Это означает, что КФУ имеет право опубликовать статью в ближайшем выпуске журнала (на веб-сайте или в печатной форме), а также переиздавать эту статью на архивных компакт-дисках журнала или включить в ту или иную информационную систему или базу данных, производимую КФУ.
Все авторские материалы размещены в журнале «Электронные библиотеки» с ведома авторов. В случае, если у кого-либо из авторов есть возражения против публикации его материалов на данном сайте, материал может быть снят при условии уведомления редакции журнала в письменной форме.
Документы, изданные в журнале «Электронные библиотеки», защищены законодательством об авторских правах, и все авторские права сохраняются за авторами. Авторы самостоятельно следят за соблюдением своих прав на воспроизводство или перевод их работ, опубликованных в журнале. Если материал, опубликованный в журнале «Электронные библиотеки», с разрешения автора переиздается другим издателем или переводится на другой язык, то ссылка на оригинальную публикацию обязательна.
Передавая статьи для опубликования в журнале «Электронные библиотеки», авторы должны принимать в расчет, что публикации в интернете, с одной стороны, предоставляют уникальные возможности доступа к их материалам, но, с другой, являются новой формой обмена информацией в глобальном информационном обществе, где авторы и издатели пока не всегда обеспечены защитой от неправомочного копирования или иного использования материалов, защищенных авторским правом.
При использовании материалов из журнала обязательна ссылка на URL: http://rdl-journal.ru. Любые изменения, дополнения или редактирования авторского текста недопустимы. Копирование отдельных фрагментов статей из журнала разрешается для научных исследований, персонального использования, коммерческого использования до тех пор, пока есть ссылка на оригинальную статью.
Запросы на право переиздания или использования любых материалов, опубликованных в журнале «Электронные библиотеки», следует направлять главному редактору Елизарову А.М. по адресу: amelizarov@gmail.com
Издатели журнала «Электронные библиотеки» не несут ответственности за точки зрения, излагаемые в публикуемых авторских статьях.
Предлагаем авторам статей загрузить с этой страницы, подписать и выслать в адрес издателя журнала по электронной почте скан Авторского договора о передаче неисключительных прав на использование произведения.