Обратная задача идентификации термофизических параметров модели Грина – Нагди III типа для упругого стержня на основе физически информированной нейронной сети

Main Article Content

Яна Андреевна Вахтерова
Дарья Андреевна Леонтьева

Аннотация

Исследована обратная задача идентификации безразмерного коэффициента теплопроводности  для уравнения Грина – Нагди III типа, которое описывает распространение тепловых возмущений с конечной скоростью и учитывает инерционные эффекты теплового потока. Для обратной задачи нарушается требование устойчивости (критерий Адамара), в результате чего даже минимальные искажения данных ведут к значительным ошибкам идентификации параметра.
В качестве метода решения задачи идентификации использован подход на основе физически информированных нейронных сетей (ФИНС), сочетающий возможности глубокого обучения с априорными знаниями о структуре дифференциального уравнения. Параметр  включен в число обучаемых переменных, а функция потерь сформирована на основе дифференциального уравнения, граничных условий, начальных условий и зашумленных экспериментальных данных с точечного датчика. Представлены результаты вычислительных экспериментов, демонстрирующие высокую точность восстановления параметра (погрешность менее 0.03%) и устойчивость метода к наличию аддитивного гауссовского шума в данных. Метод ФИНС показал себя как эффективный инструмент решения некорректных обратных задач математической физики.

Article Details

Как цитировать
Вахтерова, Я. А., и Д. А. Леонтьева. «Обратная задача идентификации термофизических параметров модели Грина – Нагди III типа для упругого стержня на основе физически информированной нейронной сети». Электронные библиотеки, т. 28, вып. 4, ноябрь 2025 г., сс. 852-69, doi:10.26907/1562-5419-2025-28-4-852-869.

Библиографические ссылки

1. Smirnova V., Semenova E., Prunov V., Zamaliev R.; Sachenkov O. Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function // Mathematics. 2023. Vol. 11, No. 12. 2639.
https://doi.org/10.3390/math11122639
2. Hadamard J. Le probleme de Cauchy et les equations aux derivers particlee lineaires hyperbolique. Paris: Hermann, 1932. 542 p.
3. Lokteva N.A., Serdyuk D.О., Skopintsev P.D. Non-stationary influence function for an unbounded anisotropic Kirchoff–Love shell // Journal of Applied Engineering Science, 2020. Vol. 18, No. 4. P. 737–744. https://doi.org/10.5937/jaes0-28205
4. Serdyuk A.O., Fedotenkov G.V. Unsteady bending function for an unlimited anisotropic plate // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2021. Vol. 25, No. 1. P. 111–126.
https://doi.org/10.14498/vsgtu1793
5. Orekhov A.A., Rabinskij L.N., Fedotenkov G.V. Fundamental'nye re-sheniya uravnenij klassicheskoj i obobshchennoj modelej teploprovodnosti // Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki. 2023. T. 165(4). S. 404–414. https://doi.org/10.26907/2541-7746.2023.4.404-414
6. Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Köpf A., Yang E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chintala S. PyTorch: An Imperative Style, High-Performance Deep Learning Library // NeurIPS. 2019.
https://doi.org/10.48550/arXiv.1912.01703
7. Vahterova YA.A., Rabinskij L.N. Fizicheski informirovannaya nejronnaya set' dlya resheniya uravneniya teploprovodnosti Grina-Nagdi III tipa // STIN. 2025. №9. S. 28–32.
8. Raissi M., Perdikaris P., Karniadakis G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations // arXiv:1711.10561, 2017, URL: https://arxiv.org/abs/1711.10561v1.
https://doi.org/10.48550/arXiv.1711.10561
9. Fedotenkov G.V., Kireenkov A.A. Algoritm resheniya kontaktnyh za-dach s ispol'zovaniem tekhnologij glubokogo mashinnogo obucheniya // STIN. 2024. № 12. S. 24–27. https://www.elibrary.ru/joqxsg.
10. Goncharenko V.I., Oleshko V.S. Ispol'zovanie iskusstvennyh nejron-nyh setej v nerazrushayushchem kontrole detalej aviacionnoj tekhniki // Izve-stiya vysshih uchebnyh zavedenij. Aviacionnaya tekhnika. 2024. № 3. S. 30–35.
11. Ivanova A., Kharin N., Baltina T., Sachenkov O. Muscle tone control system based on LIF model neural network // VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, 2022. P. 1–4. https://doi.org/10.1109/ITNT55410.2022.9848650
12. Ivanova A., Kharin N., Smirnova V., Tufanova E., Sachenkov O. Stabilization of a pendulum on an elastic foundation using a multilayer perceptron// Journal of Physics: Conference Series. 2022. Vol. 2308. 012005. https://doi.org/10.1088/1742-6596/2308/1/012005.