Abstract:
The article investigates the problem of aspect-based sentiment analysis. Such version of analysis is more challenging compared to general task of sentiment detection problem. It implies the solutions to the number of related subtasks such as aspect term extraction, aspect term polarity detection and aspect category polarity detection. The solution of aspect-based sentiment analysis problem significantly extends the capabilities of natural language processing systems.
The article gives the overview of previous works in the field and describes the train and test data from the Russian evaluation workshop SentiRuEval. For the task of aspect term extraction the vector space of distributed representations of words was used. Aspect term detection is based on mutual information method and semantic similarity. The paper contains the number of experimental results. At the end the final conclusions are drawn.