Some Approaches to Improving Prediction Accuracy using Ensemble Methods

Main Article Content

Xinyue Ma
Oleg Valentinovich Sen’ko

Abstract

This study presents the results of an experimental analysis evaluating the effectiveness of Extra Trees within gradient boosting models, as well as in a newly proposed ensemble framework where the forest is generated under conditions of enhanced internal divergence. Additionally, the paper explores the performance of Extra Trees when applied to novel feature representations computed as distances to a selected set of reference examples. It has been shown that the use of Extra Randomized Trees in gradient boosting and divergent forest models improves generalization ability. The use of expanded feature sets leads to even greater generalization ability.

Article Details

How to Cite
Ma, X., and O. V. Sen’ko. “Some Approaches to Improving Prediction Accuracy Using Ensemble Methods”. Russian Digital Libraries Journal, vol. 28, no. 6, Dec. 2025, pp. 1415-34, doi:10.26907/1562-5419-2025-28-6-1415-1434.

References

1. Habr. Open Machine Learning Course. Topic 5. Ensembles: Bagging, Random Forest. Available at: https://habr.com/ru/companies/ods/articles/324402/ (accessed 6 November 2025). (In Russ.).
2. Dmitriev A.I., Zhuravlev Yu.I., Krendelev F.P. O matematicheskikh printsipakh klassifikatsii predmetov ili yavlenii [On the Mathematical Principles of the Classification of Objects and Phenomena] // Diskretnyi analiz [Discrete Analysis]. 1967. No. 7. P. 3–17 (In Russ.).
3. Vaintsvaig M.N. Algoritm obucheniya raspoznavaniyu obrazov “Kora” [Algorithm for pattern recognition learning “Kora”] // Algoritmy obucheniya raspoznavaniyu obrazov [Algorithms for pattern recognition learning]. Moscow: Sovetskoe radio, 1973. P. 8–12 (In Russ.).
4. Heath D., Kasif S., Salzberg S. k-DT: A multi-tree learning method // Proceedings of the Second International Workshop on Multistrategy Learning. 1993. P. 138–149. https://doi.org/10.1007/0-387-34296-6_10
5. Breiman L. Random Forests // Machine Learning. 2001. Vol. 45, No. 1. P. 5–32. https://doi.org/10.1023/A:1010933404324
6. Breiman L. Bagging predictors // Machine Learning. 1996. Vol. 24, No. 2. P. 123–140. https://doi.org/10.1007/BF00058655
7. Ho T.K. The Random Subspace Method for Constructing Decision Forests // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998. Vol. 20, No. 8. P. 832–844. https://doi.org/10.1109/34.709601
8. Freund Y., Schapire R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting // Journal of Computer and System Sciences. 1997. Vol. 55. P. 119–139. https://doi.org/10.1006/jcss.1997.1504
9. Friedman J.H. Stochastic Gradient Boosting // Computational Statistics & Data Analysis. 2002. Vol. 38, No. 4. P. 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2
10. Zhou Z.H. Ensemble Methods: Foundations and Algorithms. New York: Chapman and Hall/CRC, 2012. 446 p. ISBN 978-1-4398-3003-1.
11. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer, 2009. 745 p. https://doi.org/10.1007/978-0-387-84858-7
12. Beja-Battais P. Overview of AdaBoost: Reconciling its Views to Better Understand its Dynamics // arXiv preprint arXiv:2310.18323 [cs.LG]. 2023. https://doi.org/10.48550/arXiv.2310.18323
13. Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. P. 785–794. https://doi.org/10.48550/arXiv.1603.02754
14. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree // Advances in Neural Information Processing Systems (NeurIPS). 2017. Vol. 30.
15. Hancock J.T., Khoshgoftaar T.M. CatBoost for big data: an interdisciplinary review // Journal of Big Data. 2020. Vol. 7, No. 94. 45 p. https://doi.org/10.1186/s40537-020-00369-8
16. Zhuravlev Yu.I., Senko O.V., Dokukin A.A., Kiselyova N.N., Saenko I.A. Two-Level Regression Method Using Ensembles of Trees with Optimal Divergence // Doklady Mathematics. 2021. Vol. 103, No. 1. P. 1–4.
https://doi.org/10.1134/S1064562421040177
17. Dokukin A.A., Sen’ko O.V. A New Two-Level Machine Learning Method for Evaluating the Real Characteristics of Objects // Journal of Computer and Systems Sciences International. 2023. Vol. 62, No. 4. P. 607–614. https://doi.org/10.1134/S1064230723040020
18. Senko O.V., Dokukin A.A., Kiselyova N.N., Dudarev V.A., Kuznetsova Yu.O. New Two-Level Ensemble Method and Its Application to Chemical Compounds Properties Prediction // Lobachevskii Journal of Mathematics. 2023. Vol. 44, No. 1. P. 188–197. https://doi.org/10.1134/S1995080223010341
19. Geurts P., Ernst D., Wehenkel L. Extremely Randomized Trees // Machine Learning. 2006. Vol. 63, No. 1. P. 3–42. https://doi.org/10.1007/s10994-006-6226-1
20. López-Iñesta E., Grimaldo F., Arevalillo-Herráez M. Combining feature extraction and expansion to improve classification-based similarity learning // Pattern Recognition Letters. 2016. Vol. 85. P. 84–90. https://doi.org/10.1016/j.patrec.2016.11.005
21. Breiman L., Friedman J., Olshen R.A., Stone C.J. Classification and Regression Trees. Monterey, CA: Wadsworth & Brooks/Cole, 1984. 358 p. https://doi.org/10.1201/9781315139470
22. Mahalanobis P.C. On the Generalised Distance in Statistics (reprint of 1936) // Sankhya A. 2018. Vol. 80, Suppl. 1. P. 1–7. https://doi.org/10.1007/s13171-019-00164-5