Using Machine Learning to Enhance Test Quality

Main Article Content

Ramil Radikovich Miniukov
Mikhail Mikhailovich Abramskiy

Abstract

This study focuses on the application of machine learning methods to improve the quality of test items. The research includes a review of the subject area and the implementation of two enhancement methods: similar question retrieval and distractor quality assessment. The first method involves testing five transformer-based models for generating text embeddings and six clustering algorithms. The second method uses the same transformer models in combination with three classification algorithms. Experimental results demonstrated the high effectiveness of the proposed approaches in solving both tasks.

Article Details

How to Cite
Miniukov, R. R., and M. M. Abramskiy. “Using Machine Learning to Enhance Test Quality”. Russian Digital Libraries Journal, vol. 28, no. 3, June 2025, pp. 701-17, doi:10.26907/1562-5419-2025-28-3-701-717.

References

1. Челышкова М.Б. Теория и практика конструирования педагогических тестов. М.: Логос, 2002. Т. 432. С. 5.
2. Hrich N., Azekri M., Khaldi M. An ai educational tool for detecting redundancy in distractors and items within multiple-choice tests // INTED2024 Proceedings. IATED, 2024. P. 6454–6458.
3. Аванесов В.С. Теория и практика педагогических измерений. ЦТ и МКО УГТУ-УПИ, 2005.
4. Brusilovsky P., Miller P. Web-based testing for distance education. In: P. DeBra and J. Leggett (Eds.) Proceedings of WebNet'99, World Conference of the WWW and Internet, Honolulu, HI, Oct. 24–30, 1999. AACE, P. 149–154.
5. Толстобров А.П., Коржик И.А. Возможности анализа и повышения качества тестовых заданий при использовании сетевой системы управления обучением Moodle // Вестник ВГУ. 2008. Т. 2. С. 100–106.
6. Алпацкая Е.В., Бубнов Н.В., Минченков А.В. Дифференцирующая способность тестовых материалов для оценки качества обучения // Ученые записки университета им. П.Ф. Лесгафта. 2015. № 11 (129). С. 9–14.
7. Анастази А. Психологическое тестирование. Питер, 2009.
8. Lord F.M. Applications of item response theory to practical testing problems. Routledge, 2012.
9. AlMahmoud R.H., Alian M. The effect of clustering algorithms on question answering // Expert Systems with Applications. 2024. Vol. 243. Article number 122959.
10. Zhang W.N. et al. A topic clustering approach to finding similar questions from large question and answer archives // PloS one. 2014. Vol. 9, No. 3. Article number e71511.
11. Alian M., Al-Naymat G. Questions clustering using canopy-K-means and hierarchical-K-means clustering // International Journal of Information Technology, 2022. Vol. 14, No. 7. P. 3793–3802.
12. Tarrant M., Ware J., Mohammed A. M. An assessment of functioning and non-functioning distractors in multiple-choice questions: a descriptive analysis // BMC medical education. 2009. Vol. 9. P. 1–8.
13. Moore S. et al. An automatic question usability evaluation toolkit // International Conference on Artificial Intelligence in Education. Cham: Springer Nature Switzerland, 2024. P. 31–46.
14. First Quora Dataset Release: Question Pairs // Quora, 2017. URL: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs (дата обращения: 30.04.2025).
15. Quora Question Pairs Russian // Платформа Kaggle, 2022. URL: https://www.kaggle.com/datasets/loopdigga/quora-question-pairs-russian (дата обращения: 30.04.2025).
16. Hugging Face – The AI Community [Электронный ресурс]. URL: https://huggingface.co/ (дата обращения: 30.04.2025).
17. All-MiniLM-L6-v2 // Платформа Hugging Face. URL: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 (дата обращения: 30.04.2025).
18. Sentence-transformers/all-mpnet-base-v2 // Платформа Hugging Face. URL: https://huggingface.co/sentence-transformers/all-mpnet-base-v2 (дата обращения: 30.04.2025).
19. Paraphrase-multilingual-MiniLM-L12-v2 // Платформа Hugging Face. URL: https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 (дата обращения: 30.04.2025).
20. Gte-multilingual-base // Платформа Hugging Face. URL: https://huggingface.co/Alibaba-NLP/gte-multilingual-base (дата обращения: 30.04.2025).
21. Rubert-tiny2 // Платформа Hugging Face. URL: https://huggingface.co/cointegrated/rubert-tiny2 (дата обращения: 30.04.2025).
22. Набор данных MMLU // Платформа Hugging Face. URL: https://huggingface.co/datasets/alexandrainst/m_mmlu (дата обращения: 30.04.2025).
23. Wiki-ru-wordnet документация // URL: https://wiki-ru-wordnet.readthedocs.io/en/latest/ (дата обращения: 30.04.2025).
24. Библиотека для обработки естественного языка NLTK // URL: https://www.nltk.org/ (дата обращения: 30.04.2025).
25. Liang C. et al. Distractor generation for multiple choice questions using learning to rank // Proceedings of the thirteenth workshop on innovative use of NLP for building educational applications. 2018. Article number 28490.