Neuro-Fuzzy Image Segmentation with Learning Function
Main Article Content
Abstract
This paper presents a neuro-fuzzy algorithm for high-speed grayscale image segmentation based on a modified defuzzification method using triangular membership functions. The aim of the study is to analyze the effect of simplifying the defuzzification formula on the accuracy and contrast of object selection. The proposed approach includes adaptive learning of the weight coefficient, which allows dynamically adjusting the defuzzification process depending on the target values. The paper compares the basic method of averaging membership values and a modified version taking into account nonlinear weights. Experiments conducted on 1024x720 images demonstrate that the developed algorithm provides high segmentation accuracy and improved object contrast with minimal computational costs. The results confirm the superiority of the proposed method over traditional approaches, emphasizing the prospects for applying artificial intelligence in computer vision problems.
Article Details
References
2. Bobyr' M.V., Arkhipov A.Ye., Milostnaya N.A. Metod rascheta karty glubin na osnove myagkikh operatorov // Sistemy i sredstva informatiki. 2019. T. 29. № 2. S. 71–84. https://doi.org/10.14357/08696527190207
3. Lee D.H., Chen P.Y., Yang F.J. et al. “High-Efficient Low-Cost VLSI Implementation for Canny Edge Detection” // Journal of Information Science & Engineering, 2020. Vol. 36, No. 3. P. 34–57.
4. Koohi H., Kiani K. User Based Collaborative Filtering Using Fuzzy C-Means // Measurement. 2016. V. 91. P. 134–139. https://doi.org/10.1016/j.measurement. 2016.05.058
5. Yang Q., Sun L. A Fuzzy Complementary Kalman Filter Based on Visual and IMU Data for UAV Landing // Intern. Journal for Light and Electron Optics. 2018. V. 173. P. 279–291. https://doi.org/10.1016/j.ijleo.2018.08.011.
6. S. Eti, S. Yüksel, H. Dinçer. A machine learning and fuzzy logic model for optimizing digital transformation in renewable energy: Insights into industrial information integration // Journal of Industrial Information Integration. 2024. Vol. 42. P. 100734. https://doi.org/10.1016/j.jii.2024.100734. EDN MFEAPI.
7. Romanov A.A., Filippov A.A., Yarushkina N.G. Adaptive Fuzzy Predictive Approach in Control // Mathematics. 2023. Vol. 11, No. 4. P. 875. https://doi.org/10.3390/math11040875. EDN LRGVQT.
8. Bobyr M., Bondarenko B., Malyshev A. High-speed Fuzzy Inference Machine Learning Device Based on Single-Layer Area Ratio Defuzzifier // Intelligence Enabled Research: Proceedings of the 2024 Sixth Doctoral Symposium on Intelligence Enabled Research (DoSIER 2024), Dhupguri, Jalpaiguri, West Bengal, India, November 28–29, 2024. Jalpaiguri, West Bengal, India, 2025. P. 15–25. EDN FXFCKM.
9. Zimichev E.A., Kazanskiy N.L., Serafimov P.G. Prostranstvennaya klassifikatsiya putem integratsii izobrazheniy s ispol'zovaniyem metoda klasterizatsii k-means ++ // Komp'yuternaya optika. 2014. T. 38, No. 2. S. 281–286. https://doi.org/10.18287/01342452-2014-38-2-281-286
10. Pereyra M., McLaughlin S. Fast Unsupervised Bayesian Image Segmentation with Adaptive Spatial Regularisation // IEEE Transactions on Image Processing, 2017. Vol. 26, No. 6. P. 2577–2587. https://doi.org/10.1109/TIP.2017.2675165

This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.