Fluctuational Analysis of Distributed Objects Based on Optical Flow

Main Article Content

Aleksandr Michailovich Sinitca

Abstract

The paper proposes a method for estimating the fluctuation characteristics of distributed objects based on the fluctuation analysis and the assumption that the optical flow estimate is equivalent to random-walk increments. The reliability and applicability of the proposed method are evaluated in two computational experiments. The first experiment analyses the Brownian motion of a compact object. The second evaluates the adequacy of the method for estimating the dynamic characteristics of a spatially distributed fluctuating object. In both experiments, the Hurst exponent has been validated using detrended fluctuation analysis (DFA). The results obtained indicate the applicability of the method and the need to improve its robustness.

Article Details

References

1. Fick A. Ueber Diffusion // Ann Phys. John Wiley & Sons, Ltd, 1855. Vol. 170, № 1. P. 59–86.
2. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen // Ann Phys. 1905. Vol. 4, t. 17.
3. von Smoluchowski M. Zur kinetischen Theorie der Brownschen Molekular-bewegung und der Suspensionen // Ann Phys. John Wiley & Sons, Ltd, 1906. Vol. 326, № 14. P. 756–780.
4. Hurst H.E. Long-Term Storage Capacity of Reservoirs // Transactions of the American Society of Civil Engineers. American Society of Civil Engineers, 1951. Vol. 116, № 1. P. 770–799.
5. Peng C.K. et al. Mosaic organization of DNA nucleotides // Phys Rev E. American Physical Society, 1994. Vol. 49, № 2. P. 1685.
6. Selmeczi D. et al. Cell motility as persistent random motion: Theories from ex-periments // Biophys J. Biophysical Society, 2005. Vol. 89, № 2. P. 912–931.
7. Huda S. et al. Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo // Nature Communications 2018 9:1. Nature Publishing Group, 2018. Vol. 9, № 1. P. 1–11.
8. Bogachev M.I., Eichner J.F., Bunde A. Effect of nonlinear correlations on the sta-tistics of return intervals in multifractal data sets // Phys Rev Lett. American Physical Society, 2007. Vol. 99, № 24. P. 240601.
9. Reynolds A.M. Scale-free animal movement patterns: Lévy walks outperform fractional Brownian motions and fractional Lévy motions in random search sce-narios // J Phys A Math Theor. IOP Publishing, 2009. Vol. 42, № 43. P. 434006.
10. Bearup D. et al. Revisiting Brownian motion as a description of animal move-ment: a comparison to experimental movement data // Methods Ecol Evol. John Wiley & Sons, Ltd, 2016. Vol. 7, № 12. P. 1525–1537.
11. Torney C.J., Morales J.M., Husmeier D. A hierarchical machine learning frame-work for the analysis of large scale animal movement data // Mov Ecol. BioMed Central Ltd, 2021. Vol. 9, № 1. P. 1–11.
12. Hooten M.B., Johnson D.S. Basis Function Models for Animal Movement // J Am Stat Assoc. Taylor & Francis, 2017. Vol. 112, № 518. P. 578–589.
13. Yuan N. et al. Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System // Scientific Reports 2015 5:1. Nature Publishing Group, 2015. Vol. 5, № 1. P. 1–7.
14. Bogachev M.I. et al. Understanding the complex interplay of persistent and anti-persistent regimes in animal movement trajectories as a prominent characteris-tic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test dat // Biomed Signal Process Control. 2023. Vol. 81.
15. Lyanova A.I. et al. Animal Movement Pattern Model Identification based on Detrended Fluctuation Analysis // 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022. 2022.
16. Bogachev M. et al. Video-based marker-free tracking and multi-scale analysis of mouse locomotor activity and behavioral aspects in an open field arena: A per-spective approach to the quantification of complex gait disturbances associated with Alzheimer’s disease // Front Neuroinform. 2023. Vol. 17.
17. Gonzalez J.J. et al. Robust tracking and segmentation of human motion in an im-age sequence // ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Institute of Electrical and Electronics Engi-neers Inc., 2003. Vol. 3. P. 29–32.
18. Shi J., Tomasi C. Good features to track // Proceedings of the IEEE Computer So-ciety Conference on Computer Vision and Pattern Recognition. Publ by IEEE, 1994. P. 593–600.
19. Lucas B.D., Kanade T. An Iterative Image Registration Technique with an Applica-tion to Stereo Vision. 1981. Vol. 2. P. 674–679.
20. Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion // Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-cial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin, Heidel-berg, 2003. Vol. 2749. P. 363–370.
21. Guan S., Li H., Zheng W.S. Unsupervised learning for optical flow estimation us-ing pyramid convolution LSTM // Proc (IEEE Int Conf Multimed Expo). IEEE Computer Society, 2019. Vol. 2019-July. P. 181–186.
22. Hurst H.E. A Suggested Statistical Model of some Time Series which occur in Na-ture // Nature 1957 180:4584. Nature Publishing Group, 1957. Vol. 180, № 4584. P. 494–494.
23. Kasdin N.J. Discrete Simulation of Colored Noise and Stochastic Processes and 1/fα Power Law Noise Generation // Proceedings of the IEEE. 1995. Vol. 83, № 5. P. 802–827.