Ontological Model for Creating Object Contours in an Image

Main Article Content

Abstract

Now days, the development of ontological models for creating edges and their contours for moving objects in real time or close to it is an urgent task. An ontological model for implementing this process is shown in the article. The main algorithms for detecting object edges and constructing contours in an image and program codes for their implementation are considered in the article. It is noted that the Canny algorithm is the best for recognizing edges. At the same time, its serious drawback is determined, which consists in the fact that with insignificant movement of objects, more than 50% of information about the contours is lost.

Article Details

References

1. Абрамов В.Д., Кугуракова В.В., Ризванов А.А. [и др.] Виртуальные лаборатории как средство обучения биомедицинским технологиям // Электронные библиотеки. 2016. Т. 19, № 3. С. 129-148.
2. Sanz P. Robotics: Modeling, Planning, and Control. IEEE Robotics and Automation Magazine. 2009. https://doi.org/10.1109/MRA.2009.934833
3. Reddy G.P.O. Geographic Information System: Principles and Applications. 2018.pp. 45–62. https://doi.org/10.1007/978-3-319-78711-4_3
4. Canny J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986. PAMI-8(6), pp. 679–698. DOI 10.1109/TPAMI.1986.4767851
5. Qin, X.A modified Canny edge detector based on weighted least squares. Computational Statistics. (2021). 36(1).pp.641–659.DOI10.1007/s00180-020-01017-8.
6. Бо Я., Неусыпин К.А. Совершенствование метода предварительной обработки звездной карты с использованием оператора Собеля // Автоматизация. Современные технологии. 2023. Т. 77. № 7. С. 308-314. DOI 10.36652/0869-4931-2023-77-7-308-314.
7. Tian R., Sun G., Liu X., Zheng B. Sobel edge detection based on weighted nuclear norm minimization image denoising. Electronics. 2021. 10(6), pp.1–15. DOI 10.3390/electronics10060655
8. Adlakha D., Tanwar R. Analytical Comparison between Sobel and Prewitt Edge Detection Techniques. International Journal of Scientific & Engineering Research. 2016. 7(1), pp. 1482–1485.
9. Karthick C. N., Nirmala P. Smart Edge Detection Technique in X-ray Images for Improving PSNR using Prewitt Edge Detection Algorithm with Gaussian Filter in Comparison with Laplacian Algorithm. Cardiometry. 2023. №25. Pp.1758–1762. DOI 10.18137/cardiometry.2022.25.17581762
10. Gong H.X., Hao, L. Roberts edge detection algorithm based on GPU. Journal of Chemical and Pharmaceutical Research. 2014. 6(7). Pp. 1308–1314.
11. Utama K.M.R.A., Umar R., Yudhana A. Edge detection comparative analysis using Roberts, Sobel, Prewitt, and Canny methods. Jurnal Teknologi Dan Sistem Komputer. 2022.10(2). Pp. 67–71. DOI 10.14710/jtsiskom.2021.14209
12. Qu Y., Tang W., Su, Cheng S. Web Inspection Algorithm of Low Contrast Paper Defects Using Gabor Filter. In Lecture Notes in Electrical Engineering. 2022. Vol. 920. pp. 371–378. Springer Science and Business Media Deutschland GmbH. DOI 10.1007/978-981-19-3927-3_36
13. Darwis D., Fernando Y., Trisnawati F., Marzuki D.H., Setiawansyah, S. Comparison of edge detection methods using Roberts and Laplacian operators on mango leaf objects. Barekeng: Jurnal Ilmu Matematika Dan Terapan. 2023.17(3). Pp. 1815–1824. DOI 10.30598/barekengvol17iss3pp1815-1824
14. Suzuki S., AbeK. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics and Image Processing. 1985. Vol. 30. P. 32–46. DOI 10.1016/0734-189X(85)90016-7
15. Mei L., Wang C., Zhao Y., Wei W., Li Y. Real-time detection method of landmark in UAV autonomous landing. Systems Engineering and Electronics. 2019. 41(10). Pp. 2157–2162. DOI 10.3969/j.issn.1001-506X.2019.10.01
16. Zhou Z., Zhang Y., Yuan X., Wang H. Compressing AIS Trajectory Data Based on the Multi-Objective Peak Douglas-Peucker Algorithm. IEEE Access. 2023. №11. Pp. 6802–6821. DOI 10.1109/ACCESS.2023.3234121
17. Liu J., Li H., Yang Z., Wu K., Liu Y., Liu R.W. Adaptive Douglas-Peucker Algorithm with Automatic Thresholding for AIS-Based Vessel Trajectory Compression. IEEE Access. 2019. №7. Pp. 150677–150692. DOI 10.1109/ACCESS.2019.2947111
18. Gunasekara S.R., Kaldera K., Dissanayake M.B. A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring. Journal of Healthcare Engineering, 2021. DOI 10.1155/2021/6695108
19. Çataloluk H., Çelebi F. V. A novel hybrid model for two-phase image segmentation: GSA based Chan–Vese algorithm. Engineering Applications of Artificial In-telligence. 2018. №73.Pp. 22–30. DOI10.1016/j.engappai.2018.04.027
20. Бобырь М.В., Храпова Н.И., Супрунова О.Г., Дородных А.А. Рекурсивный алгоритм закрашивания областей распознанных объектов // Известия Юго-Западного государственного университета. 2023. Т. 27, № 1. С. 126-139.
21. Бобырь М.В., Емельянов С.Г., Милостная Н.А. Оптимизация числа проходов в задаче логической фильтрации изображений // Искусственный интеллект и принятие решений. 2023. № 2. С. 98-107. DOI 10.14357/20718594230208.
22. Бобырь М.В., Кулабухов С.А. Моделирование процесса управления температурным режимом в зоне резания на основе нечеткой логики // Проблемы машиностроения и надежности машин. 2017. № 3. С. 76–82.DOI 10.3103/S1052618817030049.
23. Бобырь М.В., Храпова Н.И. Двухуровневая информационно-аналитическая система управления интеллектуальным светофором// Электронные библиотеки. 2024. №5. 20 с.
24. Бобырь М.В., Архипов А.Е., Горбачев С.В. Нечетко-логические методы в задаче детектирования границ объектов// Информатика и автоматизация. 2022. Т. 21, № 2.С. 376–404.


Most read articles by the same author(s)