On the Approach to Detecting Pedestrian Movement using the Method of Histograms of Oriented Gradients
Main Article Content
Abstract
An approach to automatically recognizing the movement of people at a pedestrian crossing presented in the article. This approach includes two main procedures, for each of which program code commands are given in the C# programming language using the EMGU computer vision library. In the first procedure, pedestrian detection is carried out using a combination of directional gradient histogram and support vector methods. The second procedure allows you to read frames from a video sequence and process them. This approach allows detecting the movements of people at a pedestrian crossing without using specialized neural networks. At the same time, the method proposed in the article demonstrated sufficient reliability of human movement recognition, which indicates its applicability in real conditions.
Article Details
References
2. Ямиков Р.Р., Григорян К.А. Анализ и разработка конвейера MLOps для развертывания моделей машинного обучения // Электронные библиотеки. 2022. Т. 25, № 2. С. 177–196. https://doi.org/10.26907/1562-5419-2022-25-2-177-196
3. Байрамов А.И., Фасхутдинов Т.Р., Тимергалин Д.М. [и др.]. Оценка усталости человека методом анализа фотографий лица с помощью сверточных нейронных сетей // Электронные библиотеки. 2021. Т. 24, № 4. С. 582–603. https://doi.org/10.26907/1562-5419-2021-24-4-582-603.
4. Поташников А.М., Власюк И.В., Аугсткальн Я.А. Анализ методов детектирования движущихся объектов различного типа на видеоизображении // Фундаментальные проблемы радиоэлектронного приборостроения. 2017. Т. 17, № 4. С. 1201-1204.
5. Скользящая_средняя. Электронный ресурс. https://ru.wikipedia.org/wiki/Скользящая_средняя (доступ свободный: дата обращения 19.06.2024)
6. Canny J. A computational approach to edge detection // IEEE Trans Pattern Anal. Mach. Intell. 1986. Т8(6). Р. 679–698.
7. Бобырь М.В., Архипов А.Е., Горбачев С.В., Цао Ц., Бхаттачарья С. Нечетко-логические методы в задаче детектирования границ объектов // Информатика и автоматизация. 2022. Т. 21, №2. С. 376–404. https://doi.org/10.15622/ia.21.2.6
8. Raj R., Rajiv P., Kumar P., Khari M., Verdú E., Crespo R. G., Manogaran G. Feature based video stabilization based on boosted HAAR Cascade and representative point matching algorithm // Image and Vision Computing. 2020. Т101. https://doi.org/10.1016/j.imavis.2020.103957
9. Бурмистров А.В. Распознавание объектов на изображениях с использованием базовых средств языка Python и библиотеки OpenCV // Научное обозрение. Технические науки. 2021. № 5. С. 15–19.
10. Gou Y., Li Q., Yao R., Chen J., Zhao H., Zhang Z. Ice accretion existence and three-dimensional shape identification based on infrared thermography detection // Infrared Physics and Technology. 2023. Т135. https://doi.org/10.1016/j.infrared.2023.104972
11. Zhou Z., Yu X., Chen X. Object Detection in Drone Video with Temporal Attention Gated Recurrent Unit Based on Transformer // Drones. 2023. Vol. 7, No. 7. https://doi.org/10.3390/drones7070466
12. Буров С.А., Титов К.Б., Иванов А.Р. Программа прогнозирования координат движения целей на основе рекуррентной искусственной нейронной сети. Свидетельство о государственной регистрации программы для ЭВМ № 2021613317 РФ. 05.03.2021.
13. Ярошевич П.В., Богуш Р.П. Алгоритм классификации изображений парковочных мест автостоянки на основе гистограмм ориентированных градиентов и метода опорных векторов // Компьютерная оптика. 2017. Т. 41. № 1. С. 110–117. https://doi.org/10.18287/2412-6179-2017-41-1-110-117
14. Побережник В.И. Классификация BIM структур с помощью гистограммы направленных градиентов и метода опорных векторов // Приложение математики в экономических и технических исследованиях. 2020. Т. 10, № 1. С. 140–146.
15. Rahman M., Zhou Yu., Wang Sh., Rogers Ja. Wart Treatment Decision Support Using Support Vector Machine // International Journal of Intelligent Systems and Applications. 2020. Vol. 12, No. 1. P. 1–11. https://doi.org/10.5815/ijisa.2020.01.01
16. Присухина И.В., Борисенко Д.В. Машинная классификация режима работы электрической рельсовой цепи методом опорных векторов // Омский научный вестник. 2018. Т. 162, №6. С. 126–130. https://doi.org/10.25206/1813-8225-2018-162-126-130
17. Электронный ресурс. https://habr.com/ru/articles/792782/ (доступ свободный: дата обращения 19.06.2024).
18. Бобырь М.В., Храпова Н.И., Архипов А.Е., Милостная Н.А. Программа детектирования движения объектов на пешеходном переходе. Свидетельство о государственной регистрации программы для ЭВМ № 2024660940 РФ. опубл. 14.05.2024.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.